Refine Your Search

Search Results

Technical Paper

A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations

2015-04-14
2015-01-0387
In the present study, we developed a reduced chemical reaction mechanism consisted of n-heptane and toluene as surrogate fuel species for diesel engine combustion simulation. The LLNL detailed chemical kinetic mechanism for n-heptane was chosen as the base mechanism. A multi-technique reduction methodology was applied, which included directed relation graph with error propagation and sensitivity analysis (DRGEPSA), non-essential reaction elimination, reaction pathway analysis, sensitivity analysis, and reaction rate adjustment. In a similar fashion, a reduced toluene mechanism was also developed. The reduced n-heptane and toluene mechanisms were then combined to form a diesel surrogate mechanism, which consisted of 158 species and 468 reactions. Extensive validations were conducted for the present mechanism with experimental ignition delay in shock tubes and laminar flame speeds under various pressures, temperatures and equivalence ratios related to engine conditions.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Technical Paper

Cavitating Flow within an Injector-Like Geometry and the Subsequent Spray

2019-04-02
2019-01-0284
Cavitation plays a significant role in the spray characteristics and the subsequent mixing and combustion process in engines. Cavitation has beneficial effects on the development of the fuel sprays by improving injection velocity and promoting primary break-up. On the other hand, intense pressure peaks induced by the vapor collapse may lead to erosion damage and severe degradation of the injector performance. In the present paper, the transient cavitating flow in the injector-like geometry was investigated using the modified turbulence model and cavitation criterion. A local density correction was used in the Reynolds-averaged Navier-Stokes turbulence model to reduce the turbulent viscosity, which facilitates the cavitation development. The turbulent stress was also considered in the cavitation inception stage. The modified model is capable of reproducing the cavitating flow with an affordable computational cost.
Technical Paper

Combustion and Emissions Performance of a Spark Ignition Engine Fueled with Water Containing Acetone-Butanol-Ethanol and Gasoline Blends

2015-04-14
2015-01-0908
Butanol has proved to be a very promising alternative fuel in recent years. The production of bio-butanol, typically done using the acetone-butanol-ethanol (ABE) fermentation process is expensive and consumes a lot of energy. Hence it is of interest to study the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. The combustion and emissions performance of ABE29.5W0.5 (29.5 vol.% ABE, 0.5 vol.% water and gasoline blend), ABE30 (30 vol.% ABE and gasoline blend) and ABE0 (pure gasoline) were investigated in this study. The results showed that ABE29.5W0.5 enhanced engine torque by 9.6%-12.7% and brake thermal efficiency (BTE) by 5.2%-11.6% compared to pure gasoline, respectively. ABE29.5W0.5 also showed similar brake specific fuel consumption (BSFC) relative to pure gasoline.
Technical Paper

Comparative Study of High-Alcohol-Content Gasoline Blends in an SI Engine

2015-04-14
2015-01-0891
Ethanol is the most widely used renewable fuel in the world now. Compared to ethanol, butanol is another very promising renewable fuel for internal combustion engines. It is less corrosive, and has higher energy density, lower vapor pressure and lower solubility in water. However, the use of Acetone-Butanol-Ethanol (ABE), an intermediate product in ABE fermentation, presents a cost advantage over ethanol and butanol and has attracted much attention recently. In this study, three high-alcohol-content gasoline blends (85% vol. of ethanol, butanol and ABE, referred as E85, B85 and ABE85, respectively) were investigated in a port-injection spark-ignition engine. ABE has a component ratio of 3:6:1. In addition, pure gasoline was also tested as a baseline for comparison. All fuels were tested under the same conditions (1200 RPM, Φ = 0.83−1.25, BMEP = 3 bar).
Technical Paper

Computational Study of the Equivalence Ratio Distribution from a Diesel Pilot Injection with Different Piston Geometry, Injection Timing and Velocity Initialization in a HSDI Engine

2014-04-01
2014-01-1110
In the new combustion strategies such as RCCI and dual-fuel combustion, the diesel pilot injection plays a pivotal role as it determines the ignition characteristics of the mixture and ultimately the combustion and emission performance. In this regard, equivalence ratio distribution resulted from the pilot injection becomes very important. In this work, computation study is carried out using KIVA-3V to simulate the engine compression stroke from intake valve close (IVC) to close to TDC so as to investigate the impact of piston geometry, injection start timing and flow initialization on the equivalence ratio distribution from a pilot injection in HSDI engine.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

Effect of Injection Parameters and EGR on the Particle Size Distributions and Exhaust Emissions for Diesel and Biodiesel Fuels in CRDI Engine

2014-04-01
2014-01-1612
Biodiesel is considered one of the most promising alternative fuels to petrol fuels. In this study, an attempt has been made to investigate and compare the effect of fuel injection pressure, injection timing, and exhaust gas recirculation (EGR) ratio on the particle size distributions and exhaust emissions of the diesel and biodiesel produced from waste cooking oil (WCO) used in a common rail direct injection (CRDI) diesel engine. The engine tests were conducted at two injection pressures (800 and 1600 bar), two injection timings (25 and 5 deg before top dead center (bTDC) and three EGR ratios (10%, 20% 30%) at a constant fuel injection energy per stroke and engine speed (1200 r/min). The results indicated that carbon monoxide (CO) and hydrocarbon (HC) emissions of biodiesel were slightly lower, but nitrogen oxide (NOx) emissions were slightly higher, than those of diesel fuel under most operating conditions.
Technical Paper

Effects of Injection Pressure on Low-sooting Combustion in an Optical HSDI Diesel Engine Using a Narrow Angle Injector

2010-04-12
2010-01-0339
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine equipped with a Bosch common rail injection system was used to study effects of injection pressures on the in-cylinder spray and combustion processes. An injector with an injection angle of 70 degrees and European low sulfur diesel fuel (cetane number 54) were used in the work. The operating load was 2.0 bar IMEP with no EGR added in the intake. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern. Two-stage low temperature reaction was seen for early injection timings.
Technical Paper

Emissions Characteristics of Neat Butanol Fuel Using a Port Fuel-Injected, Spark-Ignition Engine

2011-04-12
2011-01-0902
An experimental investigation was conducted using a Ford single-cylinder spark-ignition research engine to compare the performance and emissions of neat n-butanol fuel to that of gasoline and ethanol. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxide ere used to compare the three fuels in terms of combustion byproducts. It was found that gasoline and butanol are closest in engine performance with butanol producing slightly less brake torque. Exhaust gas temperature and nitrogen oxide measurements show that butanol combusts at a lower peak temperature. Of particular interest were the emissions of unburned hydrocarbons which were between two and three times those of gasoline suggesting that butanol is not atomizing as effectively as gasoline and ethanol.
Technical Paper

Experimental Evaluation of Electrostatically Assisted Injection and Combustion of Ethanol-Gasoline Mixtures for Automotive Applications

2010-04-12
2010-01-0171
A single nozzle port fuel injector was modified to apply electrostatic charge to the fuel stream, with the intention of studying electrostatically assisted sprays in a practical, port-injected engine. The modifications were kept external to the injector and involved placing an electrode and insulating liner over the tip of the injector. The performance of the modified injector, which combined pressure driven and electrostatic atomization, was characterized in three phases: the injector sprays themselves were studied, combustion of charged fuel droplets was studied, and the injector was installed and tested on a single cylinder spark ignition engine. In the first phase, Fraunhofer diffraction measurements of droplet size, and particle image velocimetry measurements of droplet velocity were performed. The charge transferred by the sprays was measured using an electrometer, and typical forces exerted on droplets in the sprays were estimated.
Technical Paper

High-Load Compression-Ignition Engine Emissions Reduction with Inverted Phi-Sensitivity Fuel Using Multiple Injection Strategies

2019-04-02
2019-01-0554
Inverted phi (ϕ)-sensitivity is a new approach of NOx reduction in compression-ignition (C.I.) engines. Previously, pure ethanol (E100) was selected as the preliminary test fuel in a single injection compression-ignition engine, and was shown to have good potential for low engine-out NOx emissions under low and medium load conditions due to its inverted ignition sequence. Under high load, however, the near-stoichiometric and non-homogeneous fuel/air distribution removes the effectiveness of the inverted ϕ-sensitivity. Therefore, it is desirable to recover the combustion sequence in the chamber such that the leaner region is burned before the near-stoichiometric region. When the combustion in near-stoichiometric region is inhibited, the temperature rise of that region is hindered and the formation of NOx is suppressed.
Journal Article

Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation

2010-04-12
2010-01-0883
Selective catalytic reduction (SCR) of NOx is coming into worldwide use for automotive diesel emissions control. To meet the most stringent standards, NOx conversion efficiency must exceed 80% while NH3 emissions or slip must be kept below 10-30 ppm. At such high levels of performance, non-uniformities in ammonia-to-NOx ratio (ANR) at the converter inlet can limit the achievable NOx reduction. Despite its significance, this effect is frequently ignored in 1D catalyst models. The corresponding model error is important to system integration engineers because it affects system sizing, and to control engineers because it affects both steady-state and dynamic SCR converter performance. A probability distribution function (PDF) based method is introduced to include mixture non-uniformity in a 1D, real-time catalyst model.
Technical Paper

NOx Reduction in Compression-Ignition Engine by Inverted Ignition Phi-Sensitivity

2017-03-28
2017-01-0749
A new approach of NOx reduction in the compression-ignition engine is introduced in this work. The previous research has shown that during the combustion stage, the high temperature ignition tends to occur early at the near-stoichiometric region where the combustion temperature is high and majority of NOx is formed; Therefore, it is desirable to burn the leaner region first and then the near-stoichiometric region, which inhibits the temperature rise of the near-stoichiometric region and consequently suppresses the formation of NOx. Such inverted ignition sequence requires mixture with inverted phi-sensitivity. Fuel selection is performed based on the criteria of strong ignition T-sensitivity, negligible negative temperature coefficient (NTC) behavior, and large heat of vaporization (HoV).
Technical Paper

Reducing NOx Emissions from a Common-Rail Engine Fueled with Soybean Biodiesel

2011-04-12
2011-01-1195
Performance and emissions of a common-rail production diesel engine fueled with soybean-derived biodiesel was investigated. The work was broken down into two categories. First, adjustment of injection timing and EGR ratio was investigated as a means to reduce NOx emissions to levels comparable with those obtained when using pure diesel fuel. Next, simultaneous reduction of NOx and soot emissions was investigated using high rates of EGR combined with late injection timings to approach the low-temperature combustion regime. Results from the first part of the study indicate that optimization of engine control parameters for use with biodiesel can be beneficial to performance and emissions. It was found that adjusting the engine's MAF setpoint table to reflect the difference in stoichiometric air-fuel ratio between diesel and biodiesel brought NOx emissions to comparable or lower levels.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
Journal Article

Spray Visualization and Characterization of a Dual-Fuel Injector using Diesel and Gasoline

2014-04-01
2014-01-1403
This paper focuses on the spray and atomization characteristics of a Dual-Fuel Injector (DFI) which includes a primary and a secondary fuel inlet. Three injectors were analyzed in this study. Apart from the DFI, two conventional diesel injectors were tested as baselines for comparison - a piezo-electric and a solenoid injector. The rail pressures ranged from 200 - 500 bar for the conventional injectors. The DFI was tested first as a single-fuel injector (by sealing the secondary inlet) at pressures ranging from 100 - 300 bar, and then in its dual-fuel mode with the primary inlet pressure ranging from 100 - 300 bar, and the secondary inlet at 25 bar higher than the primary pressure. Injection duration of 0.5 ms was chosen for the experiment. High-speed Mie scattering images were recorded to capture the spray evolution. Phase Doppler Anemometry (PDA) measurements were conducted at different locations in the spray for the acquisition of droplet sizes and velocity distributions.
Technical Paper

Spray Visualization and Characterization of a Micro-Variable Circular-Orifice (MVCO) Injector Coupled with a Swirl Adapter for Diesel Reformer Applications

2013-04-08
2013-01-1588
This paper focuses on the spray and atomization characteristics of a Micro-Variable Circular-Orifice (MVCO) fuel injector coupled with a unique swirl adapter. Spray characteristics produced from this configuration, such as spray penetration length, spray velocity and the droplet size distribution were evaluated under different injection pressure and air inlet pressure. Diesel injection pressure ranges from 300 bar to 700 bar at a back pressure of 1bar while compressed air at pressures of 2 bar and 4 bar was supplied to the swirl adapter. High speed Mie scattering images were recorded to capture the spray evolution, as seen from both the front view and the bottom view. Phase Doppler Anemometry (PDA) measurements were conducted at different locations in the spray for the acquisition of droplet sizes and velocity distributions.
Technical Paper

Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations

2011-04-12
2011-01-1190
A very competitive alcohol for use in diesel engines is butanol. Butanol is of particular interest as a renewable bio-fuel, as it is less hydrophilic and it possesses higher heating value, higher cetane number, lower vapor pressure, and higher miscibility than ethanol or methanol. These properties make butanol preferable to ethanol or methanol for blending with conventional diesel or gasoline fuel. In this paper, the spray and combustion characteristics of pure n-butanol fuel was experimentally investigated in a constant volume combustion chamber. The ambient temperatures were set to 1000 K, and three different oxygen concentrations were set to 21%, 16%, and 10.5%. The results indicate that the penetration length reduces with the increase of ambient oxygen concentration. The combustion pressure and heat release rate demonstrate the auto-ignition delay becomes longer with decreasing of oxygen concentrations.
X