Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Air Intake System NVH Performance Development for Commercial Vehicle

2014-04-01
2014-01-0019
Commercial vehicle NVH attributes primarily focus on interior noise for driver's comfort and exterior noise for environmental legislation. Major sources for both the interior and exterior noise are power train unit, exhaust and air intake system. This paper focuses on development of Air Intake System (AIS) for better interior and exterior NVH performance for medium and heavy commercial vehicles. For air intake system, structural radiations from its panels and nozzle noise are significant contributors on overall vehicle NVH. Noise generation mechanism in air intake system occurs due to opening and closing of the valves and inlet air column oscillation by sharp pressure pulse from cylinder. Based on benchmarking, vehicle level targets have been arrived, and then cascaded to system and sub-system level targets. For air intake system, targets for nozzle noise at wide open throttle condition have been set for exterior NVH performance.
Technical Paper

An Statistical Energy Analysis (SEA) based Methodology for Sound Package Optimization for Commercial Vehicles

2013-01-09
2013-26-0104
In recent years NVH has gained a lot of importance in the commercial vehicle industry as it contributes significantly towards user comfort and also towards the quality perception associated with a vehicle. The in-cabin noise of vehicles is critical towards the comfort and usability for the end user and the sound package installed on the vehicle plays a vital role in determining the levels associated with this attribute, especially the high frequency content. The paper discusses a methodology for optimizing the sound package for performance, cost and mass, for a truck. The approach uses a Statistical Energy Analysis (SEA) based optimization. A virtual SEA model is developed, which is correlated with actual test data. After establishing the correlation, an optimization study is carried out to identify the effectiveness of different materials and material combinations towards in-cabin noise.
Technical Paper

Data Acquisition and Failure Simulation of Metal Bumper for Heavy Commercial Vehicle

2017-03-28
2017-01-0381
This abstract work describes a method of data acquisition and validation procedure followed for a metal bumper used in commercial vehicle application. Covariance is considered as major phenomenon for repeatable measurements in proving ground data acquisition and it is to be maintained less than 0.05. In this project covariance of data acquisition is analyzed before physical simulation of acquired data. In addition to that, multiple testing conditions like uni-axial and bi-axial testing were carried out to attain the failure. PG data is used for bi-axial vibration test and conventional constant spectrum signal (CSD signal) is used for uni-axial vibration test. Target duration for uni-axial test (Z direction) was arrived using pseudo damage calculation. Strain gauges were installed in failure locations to compare PG data and rig data as well as to calculate strain life. Failures were simulated in bi-axial vibration test.
Technical Paper

Driveline Optimization to Reduce the Noise in 4X4 Heavy Commercial Vehicle

2020-09-15
2020-01-2246
One of the important factors strongly required by customers nowadays is lower noise and vibration in vehicle. In this paper the prime focus is made on the study of effect of driveline angles on the noise and vibration behavior in a 4X4 configuration commercial vehicle. The impact of propeller shaft angles in the transfer of driveline excitations to the transmission and the resulting noise and vibration is studied. An abnormal noise was perceived from transmission and the root cause was investigated for the same. These excitations were high due to the higher driveline angles as this was design requirement to maintain higher ground clearance. A two-stage approach was adopted to modify the effect (transmission) and cause (propeller shaft angle) there by reducing the abnormal noise and vibration perceived in the vehicle.
Technical Paper

In-Cylinder Combustion Control Strategy to Meet Off-Road Emission Norms with Conventional Mechanical Fuel Injection System

2014-10-13
2014-01-2648
Off-road BS III CEV (US-TIER III equivalent) emission regulations for diesel engines (i.e. Construction Equipment Vehicles) in India demands a technology upgrade to achieve a large reduction in NOx (>50%) and Particulate Matter (>50%) compared to BS II CEV emission levels. EGR is a widely accepted technology for NOx reduction in off-road engines due to lower initial and operating costs. But EGR has its own inherent deficiency of poor thermal efficiency due to lack of oxygen and further increase in soot adding complexity of meeting PM Emissions. Hence an engine meeting BS III CEV norms without EGR/SCR technologies with low initial investment is most desired solution for Indian off-road segment. This work deals with the development of an off-road diesel engine rating from 56 to 74 kW, focused mainly on in-cylinder optimization with the aid of optimum injection and charging strategies.
Technical Paper

Modelling and Experimental Study of Internal EGR System for NOx Control on an Off-Road Diesel Engine

2014-10-13
2014-01-2645
This study deals with the development of an internal EGR (Exhaust Gas Recirculation) system for NOx reduction on a six cylinder, turbocharged intercooled, off-road diesel engine based on a modified cam with secondary lift. One dimensional thermodynamic simulation model was developed using a commercially available code. MCC heat release model was refined in the present work by considering wall impingement of the fuel as given by Lakshminarayanan et al. The NOx prediction accuracy was improved to a level of 90% by a generic polynomial fit between air excess ratio and prediction constants. Simulation results of base model were correlating to more than 95% with experimental results for ISO 8178 C1 test cycle. Parametric study of intake and exhaust valve events was conducted with 2IVO (Secondary Intake Valve Opening) and 2EVO (Secondary Exhaust Valve Opening) methods. Combinations of different opening angles and lifts were chosen in both 2IVO and 2EVO methods for the study.
Technical Paper

Real Road Transient Driving Cycle Simulations in Engine TestBed for Fuel Economy Prediction

2014-10-13
2014-01-2716
The present work describes an approach to predict the vehicle fuel economy by simulating its engine drive cycle on a transient engine dynamometer in an engine testbed. The driving cycles investigated in the current study were generated from the typical experimental data measured on different vehicles ranging from Intermediate Commercial Vehicle (ICV) to Heavy-duty Commercial Vehicle (HCV) in real-world traffic conditions include various cities, highways and village roads in India. Reliability and robustness of the method was studied on various engines with cubic capacity from 3.8 liters to 8 liters using different drive cycles, and the results were discussed. Later, using same measured drive cycles, vehicle fuel economy was predicted by a vehicle simulation tool (AVL CRUISE) and results were compared with experimental data. In addition, engine coolant temperature effect on fuel economy was investigated.
Technical Paper

Real Time Simulation of Various Loads and Validation of Radiator CAC Assembly Used in Commercial Vehicle Engines

2023-05-25
2023-28-1337
Due to the emerging technologies and globalization, expectations of the customers on commercial vehicles are getting increased over the period. It is an important duty of an OEM to deliver a perfectly configured product to suit the customer requirements. When it comes to configuration of a vehicle, engine power is one of the key factors which indicate the performance of that vehicle. There is a tough competition between every OEM to increase the engine power for enhancing the overall operational performance. One method to increase power is to improve its volumetric efficiency. This is achieved with help of turbocharger and Charge Air Cooler (CAC). CAC improves volumetric efficiency by increasing intake air-charge density. Any failure on CAC leads to lower the volumetric efficiency and increase in turbocharger loading. This paper deals with the validation of CAC assembly using different test conditions by analyzing potential failure modes against the field issues.
Technical Paper

Seat Suspension Based on Variable Absorber System Stiffness for Enhanced Ride Comfort

2006-10-31
2006-01-3480
One of the important methods by which vibrations of a body are reduced is by the use of vibration absorbers or tuned absorbers. This technique involves attaching a spring mass system, called absorber system, to the vibrating body (also called primary body). This paper is a case study dealing with a primary system, here a driver seat, to attenuate its response to disturbance. It has high damped natural frequency compared to the base excitation frequency, which was collected from test data. The paper discusses the variations in absorber and primary system damping ratio, mass ratio variation and usage of variable stiffness. Detailed analysis showed instability in the tuned system due to the large gap between the primary body's damped natural frequency, and the target base excitation frequency. In order to address varying target excitation frequency, an adaptive tuned absorber is suggested.
Technical Paper

Structural Fatigue Strength Evaluation of Commercial Vehicle Structures by Calculating Damage Due to Road Load Inputs

2013-01-09
2013-26-0139
Evaluation of vehicle structural durability is one of the key requirements in design and development of today's automobiles. Computer simulations are used to estimate vehicle durability to save the cost and time required for building and testing the prototype vehicles. The objective of this work was to find the service life of automotive structures like passenger commercial vehicle (bus) and truck's cabin by calculating cumulative fatigue life for operation under actual road conditions. Stresses in the bus and cabin are derived by means of performing finite element analysis using inertia relief method. Multi body dynamics simulation software ADAMS was used to obtain the load history at the bus and cabin mount locations - using measured load data as input. Strain based fatigue life analysis was carried out in MSC-Fatigue using static stresses from Nastran and extracted force histories from ADAMS. The estimated fatigue life was compared with the physical test results.
X