Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

An Integrated Test Facility for Suspension Dampers of Commercial Vehicle

2018-04-03
2018-01-1383
In the present scenario, delivering the right product at the right time is very crucial in automotive sector to grab the competitive advantage. In the development stage, validation process devours most of the product development time. This paper focuses on reducing the validation time for damper (shock absorber) variants which is a vital component in commercial vehicle suspension system. New test facility is designed for both performance test and endurance testing of six samples simultaneously. In addition, it provides force trend monitoring during the validation which increases the efficiency of test with an enhanced control system. This new facility is also designed to provide side loading capability for individual dampers in addition to the conventional axial loading. The key parameter during validation is control of damper seal temperature within the range of 70-90°C. A cooling circuit is designed to provide an efficient temperature control by re-circulating cold water.
Technical Paper

An Statistical Energy Analysis (SEA) based Methodology for Sound Package Optimization for Commercial Vehicles

2013-01-09
2013-26-0104
In recent years NVH has gained a lot of importance in the commercial vehicle industry as it contributes significantly towards user comfort and also towards the quality perception associated with a vehicle. The in-cabin noise of vehicles is critical towards the comfort and usability for the end user and the sound package installed on the vehicle plays a vital role in determining the levels associated with this attribute, especially the high frequency content. The paper discusses a methodology for optimizing the sound package for performance, cost and mass, for a truck. The approach uses a Statistical Energy Analysis (SEA) based optimization. A virtual SEA model is developed, which is correlated with actual test data. After establishing the correlation, an optimization study is carried out to identify the effectiveness of different materials and material combinations towards in-cabin noise.
Technical Paper

Cost effective and Sustainable Alternate Material for Air Brake Tubings (ABT) in Commercial Vehicles

2014-09-30
2014-01-2409
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care has to be taken while selecting the appropriate material. Polyamide (PA12) [1] is the commonly available material which is currently used for ABT applications. Availability and material cost is always a major concern for commercial vehicle industries. This paper presents the development of ABT with an alternative material which has superior heat resistance. Thermoplastic Elastomer Ether Ester Block Copolymer (TEEE) [3] materials were tried in place Polyamide 12 for many good reasons. The newly employed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn't require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time.
Technical Paper

Data Acquisition and Failure Simulation of Metal Bumper for Heavy Commercial Vehicle

2017-03-28
2017-01-0381
This abstract work describes a method of data acquisition and validation procedure followed for a metal bumper used in commercial vehicle application. Covariance is considered as major phenomenon for repeatable measurements in proving ground data acquisition and it is to be maintained less than 0.05. In this project covariance of data acquisition is analyzed before physical simulation of acquired data. In addition to that, multiple testing conditions like uni-axial and bi-axial testing were carried out to attain the failure. PG data is used for bi-axial vibration test and conventional constant spectrum signal (CSD signal) is used for uni-axial vibration test. Target duration for uni-axial test (Z direction) was arrived using pseudo damage calculation. Strain gauges were installed in failure locations to compare PG data and rig data as well as to calculate strain life. Failures were simulated in bi-axial vibration test.
Journal Article

Design and Analysis of Lifting Pusher Drop Axle for Heavy Commercial Vehicle

2017-04-11
2017-01-9176
Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
Technical Paper

Design and Development of Front Air Suspension for Front Engine Bus with Floor at Entry Plus One Step

2012-09-24
2012-01-1934
The automotive industry is heading towards introduction of newer and newer technology aimed at providing better comforts and value to the end user. The public/ private transport vehicles in urban/rural areas with FE has wide level of acceptance in South East Asian countries. The acceptance of FE buses is mainly because of the ram air cooling of the engine, lesser maintenance, higher fuel efficiency etc whereas rear engine buses with entry plus one step are deprived of these benefits. Hence, we have designed and developed a new Front Engine Semi -Low Floor bus having floor at E+1 step. The primary design challenge was to meet the uniform floor throughout the length of the vehicle. This uniqueness will help in easy ingress and egress of the passengers which helps in reducing the turn around rime of the vehicle. Other challenges includes, meeting the customer requirements in terms of application, load and duty cycle for this new design.
Technical Paper

Driveline Optimization to Reduce the Noise in 4X4 Heavy Commercial Vehicle

2020-09-15
2020-01-2246
One of the important factors strongly required by customers nowadays is lower noise and vibration in vehicle. In this paper the prime focus is made on the study of effect of driveline angles on the noise and vibration behavior in a 4X4 configuration commercial vehicle. The impact of propeller shaft angles in the transfer of driveline excitations to the transmission and the resulting noise and vibration is studied. An abnormal noise was perceived from transmission and the root cause was investigated for the same. These excitations were high due to the higher driveline angles as this was design requirement to maintain higher ground clearance. A two-stage approach was adopted to modify the effect (transmission) and cause (propeller shaft angle) there by reducing the abnormal noise and vibration perceived in the vehicle.
Technical Paper

In-Cylinder Combustion Control Strategy to Meet Off-Road Emission Norms with Conventional Mechanical Fuel Injection System

2014-10-13
2014-01-2648
Off-road BS III CEV (US-TIER III equivalent) emission regulations for diesel engines (i.e. Construction Equipment Vehicles) in India demands a technology upgrade to achieve a large reduction in NOx (>50%) and Particulate Matter (>50%) compared to BS II CEV emission levels. EGR is a widely accepted technology for NOx reduction in off-road engines due to lower initial and operating costs. But EGR has its own inherent deficiency of poor thermal efficiency due to lack of oxygen and further increase in soot adding complexity of meeting PM Emissions. Hence an engine meeting BS III CEV norms without EGR/SCR technologies with low initial investment is most desired solution for Indian off-road segment. This work deals with the development of an off-road diesel engine rating from 56 to 74 kW, focused mainly on in-cylinder optimization with the aid of optimum injection and charging strategies.
Technical Paper

Modelling and Experimental Study of Internal EGR System for NOx Control on an Off-Road Diesel Engine

2014-10-13
2014-01-2645
This study deals with the development of an internal EGR (Exhaust Gas Recirculation) system for NOx reduction on a six cylinder, turbocharged intercooled, off-road diesel engine based on a modified cam with secondary lift. One dimensional thermodynamic simulation model was developed using a commercially available code. MCC heat release model was refined in the present work by considering wall impingement of the fuel as given by Lakshminarayanan et al. The NOx prediction accuracy was improved to a level of 90% by a generic polynomial fit between air excess ratio and prediction constants. Simulation results of base model were correlating to more than 95% with experimental results for ISO 8178 C1 test cycle. Parametric study of intake and exhaust valve events was conducted with 2IVO (Secondary Intake Valve Opening) and 2EVO (Secondary Exhaust Valve Opening) methods. Combinations of different opening angles and lifts were chosen in both 2IVO and 2EVO methods for the study.
Technical Paper

Multi-Axis Simulation Test for Two-Wheeler Carrier Structure of a Commercial Vehicle Using Accelerated Road Load Data

2017-03-28
2017-01-0218
In the present scenario, delivering right product at the right time is very crucial in automotive sector. Today, most of the OEMs have started to produce FBS (Fully Build Solution) such as oil tankers, mining tippers and two-wheeler carriers based on the market requirements. During product development phase, all automotive components undergo stringent validation protocol either in on-road or laboratory which consumes most of the product development time. This project is focused on developing validation methodology for two-wheeler carrier structure (deck) of a commercial vehicle. For this, road load data were acquired in the typical routes of customers at different loading conditions. Roads were classified as either good or bad based on the axle acceleration. To shorten the test duration, actual road load data was compressed using strain based damage editing techniques. The spectrum and transmissibility of acceleration signals at the decks were analyzed to select a deck for validation.
Technical Paper

Real Road Transient Driving Cycle Simulations in Engine TestBed for Fuel Economy Prediction

2014-10-13
2014-01-2716
The present work describes an approach to predict the vehicle fuel economy by simulating its engine drive cycle on a transient engine dynamometer in an engine testbed. The driving cycles investigated in the current study were generated from the typical experimental data measured on different vehicles ranging from Intermediate Commercial Vehicle (ICV) to Heavy-duty Commercial Vehicle (HCV) in real-world traffic conditions include various cities, highways and village roads in India. Reliability and robustness of the method was studied on various engines with cubic capacity from 3.8 liters to 8 liters using different drive cycles, and the results were discussed. Later, using same measured drive cycles, vehicle fuel economy was predicted by a vehicle simulation tool (AVL CRUISE) and results were compared with experimental data. In addition, engine coolant temperature effect on fuel economy was investigated.
Technical Paper

Real Time Simulation of Various Loads and Validation of Radiator CAC Assembly Used in Commercial Vehicle Engines

2023-05-25
2023-28-1337
Due to the emerging technologies and globalization, expectations of the customers on commercial vehicles are getting increased over the period. It is an important duty of an OEM to deliver a perfectly configured product to suit the customer requirements. When it comes to configuration of a vehicle, engine power is one of the key factors which indicate the performance of that vehicle. There is a tough competition between every OEM to increase the engine power for enhancing the overall operational performance. One method to increase power is to improve its volumetric efficiency. This is achieved with help of turbocharger and Charge Air Cooler (CAC). CAC improves volumetric efficiency by increasing intake air-charge density. Any failure on CAC leads to lower the volumetric efficiency and increase in turbocharger loading. This paper deals with the validation of CAC assembly using different test conditions by analyzing potential failure modes against the field issues.
Technical Paper

Reliable Measuring System for Fuel Consumption of Earth-Movers

2015-01-14
2015-26-0148
Fuel economy is an important customer requirement which determines the position of earth-movers such as backhoe loaders in the market. Earth-movers are heavy duty machines that are used for construction works. Currently fuel consumption in earth-movers is quantified as fuel consumed per unit time (Liters per hour). Similarly, conventional measure of productivity of the earth-movers is in terms of volume of soil trenched per hour. Measurements using the above scales showed wide variations in measured fuel consumption and productivity, For the same equipment between measurements Two equipment of same make at different trench locations and Against the competitor equipment This inconsistency and lack of a proper measuring system made logical decision making extremely difficult. This paper describes the step by step procedures involved in deriving the methodology for robust fuel consumption measurement of earth-mover vehicles.
Technical Paper

Study on Contribution of Bogie Suspension Seating Configurations & V-Rod Forces on Life of Heavy Duty Bogie Rear Axle Casing – Analysis Using Road Simulator

2024-01-16
2024-26-0362
The Heavy Duty live rear axles in commercial vehicle helps to transmit the drive to the rear wheels and also carries vehicle load. The rear axle along with wheel assembly consists of axle casing, differential unit, half shafts, wheel hub, brake drum, brake chamber and wheels. It is one of the major safety critical element in any commercial vehicle. Based on the suspension type, rear axle housing also carries V rod & radius rod mountings & Spring Seat /Wear pad / Rubber Bolster (in case of bogie suspension). This paper abbreviates the contribution of bogie suspension seating configurations & V-rod Forces on life of heavy duty bogie rear axle casing. In-service DRT hot spot observations were reported on heavy duty rear axle on few models with bogie suspension. In order to find the root cause, devising a proper testing and analysis method is of prime importance. An extensive effort was made to device test methodology based on customer application and field visits.
Technical Paper

Study on Correlation of Commercial Vehicle Axle Response with Road Profile for ISO Road Class Categorization and Durability Analysis

2018-04-03
2018-01-1114
Durability analysis is essential for vehicle validation and is carried out with the inputs of different road conditions. The selection of roads for durability analysis is critical and should represent the actual working conditions for the selected vehicle. Generally, the road conditions are subject to change with respect to time. To overcome the above, road profile data is an essential parameter which helps to represent and categorize roads in terms of ISO (International Organization for Standardization) road class. The ISO road classes objectively classify the roads with respect to roughness. This classification holds good by categorizing the signals to the respective road classes rather than different test roads. The road profiles are measured using inertial profiler methodology along with vehicle acceleration and displacement responses, also analyzed and categorized with respect to ISO road class.
X