Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Anti-Slosh Damper Design for Improving the Roll Dynamic Behavior of Cylindrical Tank Trucks

1999-11-15
1999-01-3729
The slosh forces arising due to liquid motion in partially filled containers affect the roll dynamic stability of tank vehicles. In this paper, a simplified dynamic truck roll model has been developed considering both suspension flexibility and nonlinear dynamics of the liquid cargo motion. A small-scale experimental model for a cylindrical truck tank, excited in the lateral direction, is designed and constructed to measure the viscous damping and damped natural frequency of the liquid cargo. Since the viscous damping of the liquids is limited by its natural characteristics, partitions containing rectangular slots and holes of different sizes are used to generate additional damping. It is fitted against the lateral motion of the liquid slosh, i.e. parallel to and passing through the longitudinal axis of the vehicle. These types of partitions increase the motion damping of the liquid cargo and make the liquid behave like a dynamic absorber.
Technical Paper

Non-Linear Simulation Model for Articulated Vehicles with Controllable Dampers and Flexible Sub-Structures

2002-11-18
2002-01-3043
In this paper, a non-linear simulation analysis for a 4 axles tractor semitrailer vehicle is addressed using a 14 degrees-of-freedom ride model that includes the structural dynamics of both tractor and semitrailer frames. The system non-linearity is arising due to the inclusion of switchable dampers in the vehicle cab suspension systems. The modal properties of the articulated vehicle frames are calculated using the FEM (finite element method) and then incorporated with the rigid parameters and motions of the different components of the vehicle system. The equations of motion are derived taking into account the interaction between both tractor and semitrailer frames. The Runge-Kutta method has been used to solve the non-linear differential equations of motion of the vehicle system in the time domain. Random signals are used to simulate the road surface irregularities and to excite the components of the vehicle system with low and high roughness levels (smooth and rough roads).
X