Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Analysis of Stiffness of Truck Door Panel Effective Arrangement of Stiffeners for Improving Stiffness

1995-11-01
952678
Since it is more difficult for truck door panels to realize curvature than passenger car door panels, internal stiffeners are mounted between the outer panel and inner panel through the use of an adhesive for ensuring stiffness. For this reason, a problem occurs as to the proper placement of the stiffeners so as to effectively improve stiffness. By FEM prediction and experimentation, the following have been clarified: (1) Arrangement of stiffeners for effectively improving stiffness (2) Stiffness share of stiffeners and outer panel against stiffness
Technical Paper

Application of Common Rail Fuel Injection System to a Heavy Duty Diesel Engine

1994-11-01
942294
In the diesel engine industry, the growing trends are toward wider use of electronically controlled high pressure fuel injection equipment to provide better engine performance, while conforming to the stringent exhaust emission standards. Although there have been some recent announcements of a diesel engine that applies an electronically controlled common rail type fuel injection system, there is little literature published about any attempt to reduce both exhaust emissions and noise and to improve engine performance by varying injection pressure and injection timing independently and introducing pilot injection in combination. This paper describes the details of a study made on the parameters associated with injection timing, injection pressure and pilot injection and the procedures for their optimization, with an electronically controlled common rail type fuel injection system installed in an in-line 6-cylinder 6.9 liter turbocharged and intercooled DI diesel engine.
Technical Paper

Four Wheel Steering System for Medium-Duty Trucks

1994-11-01
942310
From the standpoint of safety, the demands are growing in recent years for better controllability and stability of automobiles and in particular in trucks. The truck, however, when compared with the passenger car, is subject to larger changes in gross vehicle mass and center of gravity depending on its load placement. In addition, since the cornering power generated by the truck tire per load is smaller than that generated by the passenger car tire, it is difficult to introduce significant improvements in controllability and stability simply by use of passive techniques like suspension characteristic tuning. Therefore, studies were performed on the applicability of the 4WS system, an active vehicle dynamic characteristic control technique, to a Truck as a means for solving these problems.
Technical Paper

Improvements of Exhaust Gas Emissions and Cold Startability of Heavy Duty Diesel Engines by New Injection-Rate-Control Pump

1986-09-01
861236
In order to investigate the effects of high injection pressure on engine performance and exhaust emissions, some experimental high injection pressure in-line pumps were made and tested. Increasing fuel spray momentum by high injection pressure could reduce smoke emission, but excessive increase in injection pressure was found not so effective in further reducing smoke emission. Accordingly, a high injection pressure should be accomplished within the low engine speed range a feature that has been very difficult to achieve for a conventional in-line pump. An electronic controlled injection-rate-control pump with a variable prestroke mechanism can provide higher injection pressure in low engine speed range and advances injection timing in high engine speed range. This pump can improve fuel economy in low engine speed range and emissions (smoke and particulate) over transient FTP for HDE's.
Technical Paper

Mitsubishi New 12.0-Liter Turbocharged and Intercooled Diesel Engine

1990-09-01
901572
To meet the increasingly strong demand for high-speed transportation, better fuel economy, higher reliability and the social requirements for more strict Japanese regulations against exhaust and noise emissions, Mitsubishi Motors Corporation has recently developed the 6D40T1 in-line 6-cylinder, 12.0-liter turbocharged and intercooled diesel engine for heavy-duty trucks. This engine meets the 1989 Japanese exhaust emission regulations and has an output of 258 kW. To achieve both fuel economy and good drivability, Mitsubishi's original, electronically-controlled fuel injection system was adopted. The so-called prestroke-controlled fuel injection pump is capable of flexible and precise control of both fuel injection rate and timing. The basic structure of the 6D40T1 was designed with high rigidity to permit high cylinder pressures. In addition, to reduce friction and heat losses, a 4-valve design, roller cam followers with needle roller bearings, and shortened exhaust ports were adopted.
Technical Paper

New Mitsubishi L4 5-Liter DI Diesel Engine

1998-11-16
982800
The 4M5 series of four-cylinder, in-line, direct-injection diesel engines has been released by Mitsubishi Motors Corporation for light and medium-duty trucks and buses. Featuring an updated structure and reflecting the employment of state-of-the-art technology in the design of every component, the new engine series offers high reliability and compact dimensions. Moreover, the new series well meets contemporary demands for high performance, low noise, and clean combustion.
Technical Paper

Technology for Meeting the 1994 USA Exhaust Emission Regulations on Heavy-Duty Diesel Engine

1993-10-01
932654
Recent global environmental problems which have come to light must be solved for ensuring the survival of the human race. And it is of the utmost importance that we give to our descendants a world full of nature and beauty. In the past years Mitsubishi Motors Corporation (MMC) has long been positive in research and the development activities so as to satisfy the demands for low emission and good fuel economy vehicles. (1) As one example of our research efforts, the technology that will meet the US '94 HDDE exhaust emission regulations, which is one of the most stringent regulations in the world, is described in this paper. The exhaust emissions were reduced by improvement of combustion, using the pre-stroke control type fuel injection pump and optimizing the combustion chamber shape. Efforts were also made to improve the oil consumption, in order to reduce PM (Particulate Matter) emission.
X