Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
Journal Article

An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine

2011-08-30
2011-01-1812
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

Effects of an Annular Piston Bowl-Rim Cavity on In-Cylinder and Engine-Out Soot of a Heavy-Duty Optical Diesel Engine

2021-04-06
2021-01-0499
The effect of an annular, piston bowl-rim cavity on in-cylinder and engine-out soot emissions is measured in a heavy-duty, optically accessible, single-cylinder diesel engine using in-cylinder soot diagnostics and exhaust smoke emission measurements. The baseline piston configuration consists of a right-cylindrical bowl, while the cavity-piston configuration features an additional annular cavity that is located below the piston bowl-rim and connected to the main-combustion chamber through a thin annular passage, accounting for a 3% increase in the clearance volume, resulting in a reduction in geometric compression ratio (CR) from 11.22 to 10.91. Experiments using the cavity-piston configuration showed a significant reduction of engine-out smoke ranging from 20-60% over a range of engine loads.
Journal Article

Measurements of Liquid Length, Vapor Penetration, Ignition Delay, and Flame Lift-Off Length for the Engine Combustion Network ‘Spray B’ in a 2.34 L Heavy-Duty Optical Diesel Engine

2016-04-05
2016-01-0743
This paper presents new measurements of liquid and liftoff lengths, vapor penetration, and ignition delay using the Engine Combustion Network (ECN) ‘Spray B’ injector in a 2.34 L skip-fired heavy-duty optical engine. The data from the Spray B injector, having three 90-micron holes, are compared with previously existing constant-volume vessel data using both the Spray B injector as well as the ECN Spray A injector, which has a single 90-micron axial hole. The new data were acquired using Mie scattering, OH* chemiluminescence imaging, schlieren imaging, and incylinder pressure measurements. This paper presents data from estimated isentropic-core top-dead-center conditions with ambient densities of 15.2 and 22.8 kg/m3, temperatures of 800, 900, and 1000 K, and for both non-reacting (0% and 7.5% O2) and reacting (13, 15, and 21% O2) injections of n-dodecane at fuel-rail pressures of 500, 1000, and 1500 bar.
Journal Article

Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine with Direct-Injection

2023-04-11
2023-01-0240
Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
X