Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Journal Article

Automated Driving Impediments

2016-09-27
2016-01-8007
Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
Technical Paper

Design of an Emergency Tire Inflation System for Long Haul Trucks

1995-11-01
952592
An Emergency Tire Inflation System (ETIS) designed for use on commercial trucks was evaluated and tested. The ETIS is provided in kit form and designed to be installed by a truck operator to provide emergency air to inflate a low or punctured tire on tractor drive axles. The ETIS will continue to supply air to the tire until the system pressure falls below a safe air pressure level. The system is designed to allow the rig to be driven 500 miles to a tire repair station or to a safe location where tire repair service is available. The installation kit (Figure 1), which can fit under a truck seat, includes all the necessary equipment to install the system on the most common drive axles. The ETIS supplies air to the under-inflated tire through a previously qualified1 Rotary Union design. The Rotary Union is attached to the axle flange of the drive axle by a threaded adapter and two adjustable links that allow the Rotary Union to be placed at the center of rotation of the axle.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Journal Article

Heavy-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2775
This paper presents the fuel consumption results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to a long haul heavy duty vehicle. Based on the simulation modeling, up to 11% in fuel savings is possible using commercially available and emerging technologies applied to a 15L DD15 engine alone. The predicted fuel savings are up to 17% in a Kenworth T700 tractor-trailer unit equipped with a range of vehicle technologies, but using the baseline DD15 diesel engine. A combination of the most aggressive engine and vehicle technologies can provide savings of up to 29%, averaged over a range of drive cycles. Over 30% fuel savings were found with the most aggressive combination on a simulated long haul duty cycle. Note that not all of these technologies may prove to be cost-effective. The fuel savings benefits for individual technologies vary widely depending on the drive cycles and payload.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
X