Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Assessment & Optimization of Front End Cooling Module of a Commercial Vehicle by CFD Simulation & Prototype Testing

2020-04-14
2020-01-0164
Overall cycle time and prototype testing are significantly decreased by assessment of cooling module performance in the design stage itself. Hence, Front End Cooling and Thermal Management are essential components of the vehicle design process. Performance of the cooling module depends upon a variety of factors like frontal opening, air flow, under-hood sub-systems, module positioning, front grill design, fan operation. Effects of design modifications on the engine cooling performance are quantified by utilizing computational fluid dynamics (CFD) tool FluentTM. Vehicle frontal configuration is captured in the FE model considering cabin, cargo and underbody components. Heat Exchanger module is modelled as a porous medium to simulate the fluid flow. Performance data for the Heat Exchanger module is generated using the 1D KuliTM software. In this paper, CFD simulation of Front End Cooling is performed for maximum torque and maximum power operating conditions.
Technical Paper

Comparative Static Simulation Study of Aluminum Cylinder Head for Commercial Vehicles using Simulations Tools

2016-10-17
2016-01-2349
To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For commercial vehicles, an attempt is made to decrease weight of the current design without compromising its strength & stiffness, considering/bearing all the worst road/engine load cases and severe environmental conditions. The topic was chosen because of interest in higher payloads, lower weight, and higher efficiency. Automotive cylinder head must be lighter in weight, to meet increasingly demanding customer requirements. The design approach for cylinder head has made it difficult to achieve this target. A designer might make some judgment as to where ribs are required to provide stiffness, but this is based on engineering experience and Finite Element Analysis (FEA) of the stand-alone head.
Technical Paper

Design Optimization of Engine Cooling Unit Packaging for Commercial Vehicle

2018-07-09
2018-28-0013
An engine cooling system is required to maintain stable operating temperature for the engine and prevent it from overheating. Thermal distortion of engine parts can take place if proper cooling is not maintained and engine may loss efficiency. One of the major problem in this domain is to incorporate separate cooling systems for the different variants of engines (different power rating). A single optimized cooling unit is desired to manage the entire range of engine rated power. The factors that affect the cooling system are front end grill opening area, air recirculation, location of snorkel inlet, radiator core size, which need to be tuned to get appropriate results. The above parameters are tuned to obtain appropriate results using the Computational Fluid Dynamics (CFD) simulations. In the next stage, on road cooling trials are performed and real time data is collected.
Technical Paper

Fully Retractable Easy Access Spare Wheel Carrier Mechanism for Commercial Vehicles

2024-04-09
2024-01-2225
The new idea discussed in this paper pertains to the carrier mechanism for spare wheels in heavy commercial vehicles. Typically, these vehicles are equipped with a spare wheel carrier featuring a rope mechanism for loading and unloading the spare wheel. The conventional placement of this system is on the side of the frame/chassis or within the limits of the side member. However, the tire-changing process in this system is often arduous, time-consuming, and requires significant effort. The proposed invention addresses these challenges by repositioning the spare wheel to a vertical orientation, facilitating easier access to its bolts and simplifying the removal process from the mountings. Furthermore, the innovation incorporates a three-way actuation system (Air Actuated, Electric motor-driven, or Hydraulic cylinder actuated mechanisms), thereby reducing the need for manual effort and enhancing driver comfort.
Technical Paper

Technology Challenges and Strategies for BS-VI in Commercial Vehicles

2017-07-10
2017-28-1937
Air Pollution is a major concern in our country due to which Indian Government has taken a decision to move from BS-IV to BS-VI which is nearly 90% reduction in NOx and 50% in particulate matter along with addition of particulate number regulation for BS-VI in comparison to BS-IV norms in very short span of time. Vehicle manufacturers are also having the challenge to produce low cost and fuel efficient product with BS-VI solution in order to meet tightening emission regulations and increasing needs of lower fuel consumption. Detailed study is done with different approaches to meet BS-VI emission which is elaborately explained in different aspect of engine design and after treatment parameter with its pros and cons. After Treatment selection plays an important role in engine development to meet stringent emission legislations and customer demands. Strategies for BS-VI were described with the advantage and drawbacks for after treatment selection.
X