Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Mathematical Model of Dual Brake Valve for Dynamic Characterization

2013-01-09
2013-26-0150
Air brake system is widely used in heavy duty trucks and buses due to its great performance and efficiency. Dual brake valve (DBV) is one the of major and crucial component of an air brake system as it is controlling the air flow from reservoir to brake chamber during braking operation. Currently, due to its own complexity, it is very difficult for designer to optimize different parameters. As experimentation is tedious and time consuming task, hence it is very important to have mathematical model of DBV during in early design stage. Differential equations have been formulated for individual component of DBV such as primary piston, primary valve, relay piston, and relay valve etc. system level mathematical model has been formulated and implemented in Matlab/Simulink to capture the dynamic pressure characteristic of DBV. At the same time mathematical model of DBV has been created in AMESim to check the validity of approach.
Technical Paper

Numerical Energy Absorption Assessment of Composite Materials

2012-09-24
2012-01-1923
In order to meet the stringent crashworthy regulations and to improve the fuel economy more and more composite materials have been used in automotive industry. The damage and the corresponding failure mechanisms of the composite materials during loading are entirely different from the isotropic materials. The numerical modeling of the above and prediction of the corresponding performance parameters of a composite structure are very important. Normally, the numerical modeling of the composite structures was done with a single layer of shell or solid elements. However, the approach of using single layer of elements cannot capture the effect of delamination which causes the split of the composite structures through thickness. In order to prove this an axial impact study was conducted on cylindrical pultruded glass polyester composite tubes.
X