Refine Your Search

Topic

Search Results

Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

A Practical Fail-Operational Steering Concept

2020-10-02
Abstract Automated vehicles require some level of subsystem redundancy, whether to allow a transition time for driver re-engagement (L3) or continued operation in a faulted state (L4+). Highly automated vehicle developers need to have safe miles accumulated by vehicles to assess system maturity and experience new environments. This article presents a conceptual framework suggesting that hardware newly available to commercial vehicle application can be used to form a steering system that will remain operational upon a failure. The key points of a provisional safety case are presented, giving hope that a complete safety case is possible. This article will provide autonomous vehicle developers a view of a near term possibility for a highly automated commercial vehicle steering solution.
Journal Article

A Review of Intelligence-Based Vehicles Path Planning

2023-07-28
Abstract Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm.
Journal Article

Algorithm Development for Avoiding Both Moving and Stationary Obstacles in an Unstructured High-Speed Autonomous Vehicular Application Using a Nonlinear Model Predictive Controller

2020-10-19
Abstract The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model.
Journal Article

An Investigation of a Locomotive Structural Crashworthiness Using Finite Element Simulation

2018-11-02
Abstract In this article, the crashworthiness of a locomotive is assessed through finite element analysis (FEA). The present investigation is focused on the analysis of a locomotive with driving cab to improve the modeling approach and exploring the intrinsic structural weaknesses to improve its crashworthiness. The analyses are conducted according to the EN 15227 standard, which provide crashworthiness requirements for locomotive structure. The finite element model is validated in terms of acceleration and energy balance by the experimental results. The validated model is further used to assess the crashworthiness behavior at a higher impact speed, that is, 100, 160, and 225 km/hr. It has been noticed that local buckling occurs at different points, which reduces the desired progressive damage behavior in the locomotive. The results indicate that at higher speed, large plastic deformation occurs in the frontal part of the locomotive.
Journal Article

Analysis of Lateral Stability and Ride of an Indian Railway Constrained Dual-Axle Bogie Frame

2022-11-10
Abstract This article investigates the lateral dynamic behavior of a two-wheel axle bogie frame of an Indian railway vehicle. The influence of the different parameters of the vehicle on stability is investigated. The model is formulated by assigning 10 degrees of freedom (DoF) to the system with yaw and lateral DoF assigned to the bogie frame and vertical, lateral, roll, and yaw DoF assigned to each wheel axle. Linear creep force and moments suggested by Kalker’s linear theory of creep have been accounted for in the analysis. The stability analysis is carried out by transforming the second-order differential equations into first-order differential equations using state-space representation. The present model is validated by comparing the eigenvalues of the analytical model with the same obtained from the finite element (FE) model. The results obtained from the analytical and FE model are in good agreement.
Journal Article

Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines

2019-01-23
Abstract Insulating combustion chamber surfaces with thermal barrier coatings (TBCs) provides thermal efficiency improvement when done appropriately. This article reports on insulation heat transfer, engine performance characteristics, and damage modelling of “temperature swing” TBCs. “Temperature swing” insulation refers to the insulation material applied on surfaces of combustion chamber walls that enables selective manipulation of its surface temperature profile over the four strokes of an engine cycle. A combined GT Suite-ANSYS Fluent simulation methodology is developed to investigate the impact of thermal properties and insulation thickness for a variety of TBC materials for its “temperature swing” characteristics. This one-dimensional transient heat conduction analyses and engine cycle simulations are performed using scaled-down thermal properties of yttria-stabilized zirconia.
Journal Article

Analysis of the Damage Propagation Process during Actual Operation of a Truck Tire—A Case Study

2022-10-13
Abstract The increased scope of active and passive safety in motor vehicles and the enforcement of approval requirements for individual parts and assemblies affect the design and parameters of a car’s motion. The tire, which transmits forces and torques onto the road’s surface is a particularly crucial element in the vehicle. Its structure, type of mixture, and operating conditions determine the safety of vehicle motion. The three-axial force system loads the tires of the car and affects both the tread and sidewall, as well as the suspension and steering system. Taking into account the controllability and stability of movement, the tire is subjected to dynamic and thermal loads, as well as to wear and random damage. This negatively impacts on the joints of composite layers. The sudden loss of pressure in the tire can lead to serious accidents, especially when moving at high speeds, due to changes in the rolling radius.
Journal Article

Analysis of the Interaction between Soft Particles and Fuel Filter Media

2021-08-16
Abstract The transportation industry is currently in a transition toward the use of zero-emission vehicles; however, reaching it will take a considerable amount of time. In the meantime, a diesel powertrain will remain the workhorse for most heavy-duty transportation. In order to reduce the engine’s environmental impact, biofuels, such as biodiesel, are used as drop-in fuels or fuel blends. The use of drop-in fuels may create challenges for the fuel system since sticky deposits can precipitate and cause injector malfunctioning or premature fuel filter plugging. It has been concluded in the past that these deposits have been caused by soft particles. In this article, soft particles created through the degradation of biodiesel and their effect on filters are studied. The article aims to analyze fuel filters and investigate the materials responsible for soft particle separation. The study includes three pre filters and three main filters that are commercially available truck filters.
Journal Article

Application of Image Color Analysis for the Assessment of Injector Nozzle Deposits in Internal Combustion Engines

2022-01-18
Abstract The article contains the results of operational investigations of deposit formation on external and internal surfaces of injector nozzles of the marine self-ignition engines during their operational use. The aim of this article is to introduce an image analysis method for global assessment of the quantity and quality of injector nozzle deposits in piston internal combustion engines. The components of medium-speed marine engines fueled with distillation and residual fuels were investigated. Digital images of new and used injector nozzles without deposits and with random deposits formed after natural operation on marine ships, respectively, were taken. Macro and microscopy images of external surfaces were taken in a shadowless tent and were illuminated with low-temperature lamps. The characteristic surfaces of the injector nozzles were virtually separated from the white background.
Journal Article

Articulated Vehicle Lateral Stability Management via Active Rear-Wheel Steering of Tractor Using Fuzzy Logic and Model Predictive Control

2020-07-01
Abstract In-phase rear-wheel steering, where rear wheels are steered in the same direction of front wheels, has been widely investigated in the literature for vehicle stability improvements along with stability control systems. Much faster response can be achieved by steering the rear wheels automatically during an obstacle avoidance maneuver without applying the brakes where safe stopping distance is not available. Sudden lane change movements still remain challenging for heavy articulated vehicles, such as tractor and semitrailer combinations, particularly on roads with low coefficient of adhesion. Different lateral accelerations acting on tractor and semi-trailer may cause loss of stability resulting in jackknifing, trailer-swing, rollover, or slip-off. Several attempts have been made in the literature to use active steering of semi-trailer’s rear wheels to prevent jackknifing and rollover.
Journal Article

Articulated Vehicle Stability Control Using Brake-Based Torque Vectoring on Trailer Using Nonlinear Model Predictive Control

2022-10-17
Abstract Unstable articulated vehicles pose a serious threat to the occupants driving them as well as the occupants of the vehicles around them. Articulated vehicles typically experience three types of instability: snaking, jack-knifing, and rollover. An articulated vehicle subjected to any of these instabilities can result in major accidents. In this study a Nonlinear Model Predictive Control (NMPC) that applies brake-based torque vectoring on the trailer is developed to improve the articulated vehicle stability. The NMPC formulation includes tire saturation and applies constraints to prevent rollover. The controller output is a left and right brake force allowing the longitudinal velocity change to be incorporated into the model. Simulations were conducted to instigate snaking and jack-knifing and show the NMPC controller result compared to a simple proportional controller.
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

Comparing Grade Severity Rating System Models for Trucks Fitted with Drum Brakes versus Disc Brakes

2022-07-01
Abstract Excessive brake heating of trucks on downgrades is a cause of continuing concern for the Wyoming Department of Transportation (WYDOT). Brake failure on downgrades characteristically takes a catastrophic toll on lives and property. The Grade Severity Rating System (GSRS) developed by the Federal Highway Administration (FHWA) recommends a maximum safe speed limit that has been identified as a feasible remedy for reducing the incidence of downgrade truck crashes. However, truck characteristics and roadway geometrics have changed over the years following the development of the GSRS. To deal with this development, a research project was initiated by the WYDOT in 2016 to update the GSRS model. The test truck used for the field tests in the prior research project was fitted with disc brakes on the front axle and drum brakes on the rear axle. However, disc brakes represent only about 20% of the brake market.
Journal Article

Design of Adaptive Control System for Weight on Bit of Vehicle-Mounted Drilling Rig

2022-04-07
Abstract Aiming at the problems of insufficient perception and adaptability of vehicle-mounted drilling rig control system to complex formation and unsatisfactory drilling efficiency, an adaptive drilling weight on bit (WOB) control system of the vehicle-mounted drilling rig is designed in this article. Based on the real-time monitoring of drilling parameters obtained by various sensors, the lithology of drilling formation is identified by particle swarm optimization-support vector machine (PSO-SVM), the corresponding high-efficiency WOB is matched according to the differences in rock properties of different formations, and the valve port size of electrohydraulic proportional overflow valve is controlled by fuzzy proportional-integral-derivative (PID) to adjust the feed force of the feed cylinder so that the WOB of the drilling rig can change adaptively with the formation, and the rock-breaking efficiency of the drilling rig can be improved.
Journal Article

Design, Analysis, and Optimization of Off-Highway Rear Dump Truck Chassis Frame Rail Profile Using Design Exploration and Finite Element Analysis Technique

2024-01-31
Abstract During mining material hauling, the chassis frame structure of rear dump trucks is subjected to fatigue loading due to uneven road conditions. This loading often leads to crack propagation in the frame rails, necessitating the determination of stresses in the critical zone during the design stage to ensure structural integrity. In this study, a computer-aided engineering (CAE) methodology is employed to size and select the rectangular profile cross section of the chassis frame rail. A detailed design investigation of the chassis frame is conducted to assess its load resistance, structural flexibility, and weld joint fatigue life under critical stresses arising from combined bending and torsion loads. The optimization process aims to determine the optimal rail size and material thickness, striking a balance between minimizing mass and maximizing structural reliability.
Journal Article

Development of Load Reconstruction Technique and Application on Commercial Vehicle Suspension

2023-06-12
Abstract The ability to predict the durability of a structure depends on the knowledge of operating loads experienced by the structure. Typically, multi-body dynamics (MBD) models are used to cascade measured wheel loads to hard points. However, in this approach, there are many sources by which errors creep into cascaded forces. Any attempt to reduce sources of such errors is time consuming and costly. In typical program development timelines, it is very difficult to accommodate such model calibration efforts. Commercial load cells exist in the industry to give engineers insight into understanding the complex real-world loading of their structures. A significant limitation to the use of load cells is that the structure needs to be modified to accept the load cell, and not all desired loading degrees of freedom (DOFs) can be measured. One of the innovative solutions to calculate operating loads is to convert the structure itself into its own load transducer.
Journal Article

Dimensionless Analysis of Rearward Amplification of Trucks with Single and Double Trailers: A Frequency Analysis

2022-12-08
Abstract This article provides a dimensionless analysis of the rearward amplification (RA), that is, the ratio of peak lateral acceleration between tractor and rearmost trailer, of commercial trucks with single and double trailers. Through the nondimensionalization, a series of dimensionless parameters that are critical to the lateral and yaw dynamics of the vehicle are determined, which primarily includes vehicle mass ratio, momentum ratio, wheelbase ratio, and longitudinal center of gravity (CG) position ratio. A series of simulations are performed with sinusoidal steering maneuvers with various frequencies ranging from 0.01 Hz to 0.6 Hz. A frequency analysis of the effect of the dimensionless parameters on the RA for the single- and double-trailer trucks is provided. The simulation results suggest that increasing the trailer load causes a larger RA at the steering frequencies below 0.5 Hz.
Journal Article

Directional Vehicle Control by Steering the Third Axle to Provide Redundancy for Steer-by-Wire Systems and Highly Autonomous Vehicles

2020-09-25
Abstract A way of providing steering redundancy for highly autonomous vehicles or vehicles equipped with steer-by-wire systems by steering the rear axle for directional control of the vehicle has been previously proposed. In this study, we further investigate and improve on that concept and validate it through simulation and experimental testing on a vehicle. Consequently, we show that in the case of failure of primary front axle steering system, the vehicle controller steering command (in the case of autonomous driving) or the driver’s steering command (in the case of a steer-by-wire system) can be mathematically manipulated to generate a steering input at the rear axle, which results in the same yaw rate response as if the vehicle was steered from the front, and thus providing a way to control the vehicle should a failure occur in the primary steering system.
X