Refine Your Search

Search Results

Training / Education

ASME Y14.5 GD&T for Manufacturing - Introductory Level

This 1-day introductory-level course builds on fundamentals of geometric dimensioning and tolerancing and teaches the impact of GD&T on the manufacturing process. The course focuses on the basic requirements of engineering drawings, size dimensions, form tolerances, and the datum system, as well as how tolerancing requirements affect production. Each participant receives: A GD&T for Manufacturing Workbook,  A GD&T Ultimate Pocket Guide (2009), and Class handouts.  Newly acquired learning is reinforced with numerous practice exercises.
Training / Education

Additive Manufacturing Bundle

Anytime
Many companies are starting to recognize the benefits additive manufacturing (AM) offers in terms of speed, simplicity, reliability, and cost. Additive manufacturing is a process in which a three-dimensional computer model design s built into a physical object by joining thin layers of material. AM is a versatile field that encompasses a variety of methods, materials, and applications. The one-hour courses in this bundle explain the fundamental concepts of additive manufacturing, including the main principles behind AM and the safety precautions to take during the process.
Training / Education

Advanced Concepts of GD&T ASME Y14.5 2009 - Foundational Level

This two-day foundational-level course teaches Advanced Concepts of GD&T as prescribed in the ASME Y14.5-2009 Standard. It offers an explanation of complex GD&T topics, such as the expanded use of composite position and profile tolerances, customized datum reference frames, the translation modifier, and applying GD&T to non-rigid parts. You’ll learn about functional dimensioning, form controls, the datum system, additional and complex datum feature types, expanded datum target concepts and usage on restrained parts, simultaneous, and separate requirements.
Training / Education

Advanced Product Quality Planning

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Advanced product quality planning (APQP) is essential to improving the way companies develop products and services.  It is a standardized, universally accepted fundamental business strategy. This strategy is applicable to all types of organizations including manufacturing and service companies, schools, hospitals, and governmental agencies. The aim of APQP is to enable the organization to produce products and provide services focused on satisfying customer’s needs, wants, and expectations.  
Training / Education

Applications of GD&T ASME 14.5 - 1994 & 2009 Foundational Level

This course teaches the thought processes involved in assigning GD&T to components, and it changes the way many engineers think about part tolerancing. The course focuses on what constitutes good and poor drawing practices, common dimensioning methods used in industry, using GD&T to communicate system functions on component dimensions, and the logic of how to apply GD&T to components. You’ll also learn how to select datum features and how to fully define component surfaces using GD&T. Establishing tolerance values is not covered.   
Training / Education

Comparison of ASME Y14.5 1994 to 2009 - Introductory Level

This 1-day introductory-level course offers an explanation of features in the ASME Y14.5-2009 Standard and compares them to the 1994 Standard. The course covers the pertinent changes made to the Y14.5 standard, including how the subject matter has been reorganized and about new sections that have been created for profile, orientation, and form. Each participant receives: An ASME Y14.5 1994-2009 Comparison Workbook,  Class handouts,  A GD&T Ultimate Pocket Guide (2009), and An ASME Y14.5 1994-2009 Comparison Chart Set. Newly acquired learning is reinforced throughout the class with numerous practice exercises.
Training / Education

Critical Concepts of Tolerance Stacks ASME Y14.5 1994, 2009, 2018 - Advanced Level

Using tolerance stacks ensures that parts fit together properly, reducing scrap and rework, thereby increasing value. This 3-day advanced-level course includes everything covered in the 2-day foundational-level course. It explains how to use tolerance stacks to analyze product designs and how to use geometric tolerances in stacks.
Training / Education

DFMEA Overview and Application

During this DFMEA Overview and Application course, participants will be introduced to important FMEA concepts, the basic theory behind the concepts, then discuss how these concepts can be applied to the customer's design FMEA activities. Participant activities include: reading assignments, group discussions, exercises, building Block Diagrams as a group, and beginning a DFMEA on a customer’s product.
Training / Education

Design for Manufacturing & Assembly

Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes.  Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes.  This course will include information on how DFM+A fits in with QFD, Concurrent Engineering, Robust Engineering, and other disciplines.
Training / Education

Design for Manufacturing & Assembly (DFM/DFA)

2024-05-13
Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day course, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design!
Training / Education

Design of Experiments (DOE) for Engineers

2024-05-15
Design of Experiments (DOE) is a methodology that can be effective for general problem-solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include identifying proper design dimensions and tolerances, achieving robust designs, generating predictive math models that describe physical system behavior, and determining ideal manufacturing settings. This course utilizes hands-on activities to help you learn the criteria for running a DOE, the requirements and pre-work necessary prior to DOE execution, and how to select the appropriate designed experiment type to run.
Training / Education

Design of Experiments - Basic Simplified Taguchi

Design of Experiments is a statistically based, structured approach to product or process improvement that will quickly yield significant increases in product quality and subsequent decreases in cost.  Products and processes can be designed to function with less variation and with less sensitivity to environmental factors or customer usage. While still maintaining high quality from a customer's viewpoint, products and processes can utilize lower cost materials and methods.  Specifications can be opened-up with wider tolerances while still maintaining high quality for customers.  
Training / Education

FEA Beyond Basics: Nonlinear Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) has been an indispensable tool for design simulation for several decades but this wide spread use has been limited to simple types of analyses. Relatively recently, more advanced analyses have given easy-to-use interfaces enabling design engineers to simulate problems formerly reserved for analysts. FEA Beyond Basics targets the FEA users who wish to explore those advanced analysis capabilities. It will demonstrate how to move past the ubiquitous linear structural analysis and solve structural nonlinear problems characterized by nonlinear material, large displacements, buckling or nonlinear connectors.
X