Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Numerical Evaluation of the Suspension and Driveline Dynamic Coupling in Heavy Trucks

2004-10-26
2004-01-2711
This study provides a numerical evaluation of the dynamic coupling that exists between the powertrain, suspensions, and tire dynamics in class 8 trucks. The spatial dynamics of the driveline, including the offset angels that commonly exist in practice, are modeled along with a lumped-parameter representation of the suspension and tire dynamics in vertical, longitudinal, and torsional directions. The model is used to show how the suspension dynamics and the angle change that it causes in driveline geometry can affect the vibrations resulting from the powertrain. The numerical model is also used for a parametric study in which the effect of various suspension and powertrain parameters on the dynamic coupling that exists between the two is evaluated.
Technical Paper

Dynamic Influence of Frame Stiffness on Heavy Truck Ride Evaluation

2004-10-26
2004-01-2623
This experimental study determines the effect of truck frame stiffness on truck ride, as measured by B-post vertical and fore-aft accelerations. After describing the test setup, the paper will describe the details of two truck frames that are used in a series of tests conducted on a class-8 truck in the laboratory. The frames that are used for the tests include what commonly is used in production trucks in North American markets (called “baseline” frame), and a frame that is 15% thinner (called “thin” frame). The test results, which are analyzed in frequency domain, are compared for the two frames. They indicate that the thin frame performs similar to the baseline frame when the truck is subjected to heave inputs. For roll inputs, the thin frame causes an increase in B-post accelerations, mostly at frequencies associated with the frame beaming and the primary (axle) suspension resonance.
Technical Paper

Effect of Panhard Rod Cab Suspensions on Heavy Truck Ride Measurements

2004-10-26
2004-01-2710
This study provides an experimental account of the effect of panhard rod suspensions on heavy truck ride, as evaluated by the B-post vertical and fore-aft accelerations. After describing the test setup, the paper will describe the details of two rear cab suspensions that are commonly used in North American trucks. Cab suspensions with dampers or similar elements that are used to provide lateral forces at the rear of the cab (called “baseline” cab suspension for the purpose of this study) and those that use a lateral link with a torsion spring at one end-commonly called “panhard rod”-are the two classes of rear cab suspensions that are considered in this study. The tests are performed on a class 8 truck that is setup in the laboratory for the purpose of providing good test repeatability and conducting an accurate design of experiment. The test results, which are analyzed in frequency domain, are compared for the two cab suspensions.
Technical Paper

Effects of Passive and Semi-Active Suspensions on Body and Wheel Hop Control

1989-11-01
892487
The effect of primary suspensions (shock absorbers) on the body and axle motion of heavy trucks is investigated. A simulation program is used to show how damper tuning of conventional passive dampers and “skyhook” semiactive dampers effect ride, as measured by body acceleration, and axle motion, as measured by tire acceleration and tire deflection. Special attention is made to the coupling and interaction between the body and the axle motion. It is shown that passive and semiactive dampers have a different effect on the axle and body dynamics.
Technical Paper

Pneumatically Balanced Heavy Truck Air Suspensions for Improved Roll Stability

2015-09-29
2015-01-2749
This study provides a simulation evaluation of the effect of maintaining balanced airflow, both statically and dynamically, in heavy truck air suspensions on vehicle roll stability. The model includes a multi-domain evaluation of the truck multi-body dynamics combined with detailed pneumatic dynamics of drive-axle air suspensions. The analysis is performed based on a detailed model of the suspension's pneumatics, from the main reservoir to the airsprings, of a new generation of air suspensions with two leveling valves and air hoses and fittings that are intended to increase the dynamic bandwidth of the pneumatic suspensions. The suspension pneumatics are designed such that they are able to better respond to body motion in real time. Specifically, this study aims to better understand the airflow dynamics and how they couple with the vehicle dynamics.
Technical Paper

Semiactive Fuzzy Logic Control for Heavy Truck Primary Suspensions: Is it Effective?

2005-11-01
2005-01-3542
Using a simulation model, this study intends to provide a preliminary evaluation of whether semiactive dampers are beneficial to improving ride and handling in class 8 trucks. One of the great challenges in designing a truck suspension system is maintaining a good balance between vehicle ride and handling. The suspension components are often designed with great care for handling, while maintaining good comfort. For Class 8 trucks, the vehicle comfort is also greatly affected by the cab and seat suspensions. Dampers for passive suspensions are tuned “optimally,” using various metrics that the ride engineer may consider, for the condition in which the truck operates most frequently. In recent years, the popularity of semiactive dampers in passenger vehicles has prompted the possibility of considering them for class 8 trucks. In this study, the vehicle safety versus ride comfort trade-off is studied for a certain class of suspensions with semiactive fuzzy control.
Technical Paper

The Challenge of Designing a Semiactive Damper for Heavy Truck Seat Suspensions

2005-11-01
2005-01-3544
The close proximity of seat suspensions to human body presents several challenges in terms of the perception of the suspension forces by the vehicle operator. This is particularly true of the suspensions with time-varying forces, such as semiactive seat suspensions. The major challenge in such suspensions is changing the suspension force from one state to under, without causing excessive amounts of dynamic jerk. This paper looks into the cause of dynamic jerk in semiactive suspensions with skyhook control, and presents two alternative implementations of skyhook control, called “no-jerk skyhook,” and “skyhook function,” for the purpose of this study. An analysis of the relationship between absolute velocity of the sprung mass and the relative velocity across the suspension is used to show the damping force discontinuities that result from skyhook control.
Technical Paper

The Virginia Tech Center for Transportation Research “Smart Truck” - An Instrumented Heavy Vehicle for Evaluation of Intelligent Transportaltion Systems

1997-11-17
973186
The objective of this paper is to describe a Class 8 heavy truck that the Virginia Tech Center for Transportation Research has modified and instrumented for use in evaluating Intelligent Transportation Systems (ITS) technologies. The truck is capable of recording a variety of data, both electronic and video, in real-time from a suite of sensors and cameras that have been inconspicuously mounted on the tractor. The tractor, trailer, and instrumentation package enable Virginia Tech to conduct commercial vehicle ITS research related to safety and human factors, and advanced vehicle control systems (AVCS). This paper will describe the instrumentation package, and address both general and specific types of research that can be performed using this truck.
X