Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Commercial Vehicle Global Positioning System Based Telematics Data Characteristics and Limitations

2017-03-28
2017-01-1439
The use of the United States’ Global Positioning System (GPS) to assist with the management of large commercial fleets using telematics is becoming commonplace. Telematics generally refers to the use of wireless devices to transmit data in real time back to an organization. When tied to the GPS system telematics can be used to track fleet vehicle movements, and other parameters. GPS tracking can assist in developing more efficient and safe operations by refining and streamlining routing and operations. GPS based fleet telematics data is also useful for reducing unnecessary engine idle times and minimizing fuel consumption. Driver performance and policy adherence can be monitored, for example by transmitting data regarding seatbelt usage when there is vehicle movement. Despite the advantages for fleet management, there are limitations in the logged data for position and speed that may affect the utility of the system for analysis and reconstruction of traffic collisions. The U.S.
Technical Paper

Medium Duty North American Delivery Van Frontal Barrier Crash Test Data for Crash Reconstruction

2015-04-14
2015-01-1420
Traditional accident reconstruction analysis methodologies include the study of the crush-energy relationship of vehicles. By analyzing the measured crush from a vehicle involved in a real world accident and comparing it to a test vehicle with a known energy, from a crash test, the real world vehicle's damage energy can be evaluated. In addition, the change-in-velocity (Delta-V) can be calculated. The largest source of publicly available crash tests is from the National Highway Traffic Safety Administration (NHTSA). NHTSA conducts numerous Federal Motor Vehicle Safety Standard (FMVSS) compliance and New Car Assessment Program (NCAP) testing for many passenger vehicles for sale in the United States.
Journal Article

Timing and Synchronization of the Event Data Recorded by the Electronic Control Modules of Commercial Motor Vehicles - DDEC V

2013-04-08
2013-01-1267
It is well recognized that Heavy Vehicle Event Data Recorder (HVEDR) technology has been incorporated in the Electronic Control Modules (ECMs) on many on-highway commercial motor vehicles. The dynamic time-series data recorded by these HVEDRs typically include vehicle speed, engine speed, brake and clutch pedal status, and accelerator pedal position. With specific respect to Detroit Diesel ECMs, data are recorded surrounding certain events at a rate of 1.0 Hz. In this research, controlled testing was conducted to determine the time differences between the values being generated by the sourcing sensors and the interpreted data being broadcast on the vehicle's SAE J1939 controller area network (CAN). To accomplish this, raw sensor data as provided to the ECM was monitored, as were the subsequent J1939 CAN transmissions from the ECM.
X