Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of Directional Stability Criteria for an Early Warning Safety Device

1990-10-01
902265
Development of a micro-processor based early warning safety device that can detect and warn the drivers of impending dynamic instabilities is discussed to improve the operational safety of articulated freight vehicles. Directional dynamics of articulated freight vehicles are investigated to determine the key dynamic response parameters that can best describe the onset of rollover and jackknife instabilities. The feasibility of identified key response parameters is further investigated in view of various vehicle design and operating conditions, and ease of on-line acquisition and analyses. The study concludes that a general stability criteria can be established to identify impending roll and jackknife instabilities, and a safety monitor can be conceived to provide an early warning to the driver.
Journal Article

Effect of Terrain Roughness on the Roll and Yaw Directional Stability of an Articulated Frame Steer Vehicle

2013-09-24
2013-01-2366
Compared to the vehicles with conventional steering, the articulated frame steer vehicles (ASV) are known to exhibit lower directional and roll stability limits. Furthermore, the tire interactions with relatively rough terrains could adversely affect the directional and roll stability limits of an ASV due to terrain-induced variations in the vertical and lateral tire forces. It may thus be desirable to assess the dynamic safety of ASVs in terms of their directional control and stability limits while operating on different terrains. The effects of terrain roughness on the directional stability limits of an ASV are investigated through simulations of a comprehensive three-dimensional model of the vehicle with and without a rear axle suspension. The model incorporates a torsio-elastic rear axle suspension, a kineto-dynamic model of the frame steering struts and equivalent random profiles of different undeformable terrains together with coherence between the two tracks profiles.
Technical Paper

Jackknifing Prevention of Tractor-Semitrailer Combination Using Active Braking Control

2015-09-29
2015-01-2746
Vehicle jackknifing is generally associated with the loss of yaw stability, and is one of the most common cause of serious traffic accidents involving tractor-semitrailer combinations. In this paper, an active braking control strategy is proposed for jackknifing prevention of a tractor-semitrailer combination on a low friction road. The proposed control strategy is realized via upper-level and lower-level control structures considering braking of both the units. In the upper-level control, the required corrective yaw moments for tractor and semitrailer are generated using a PID controller aiming to reduce errors between the actual yaw rates of tractor-semitrailer and the target yaw rates deduced from a reference model. The corrective yaw moments are achieved through brake torque distribution among the tractor and semitrailer axle wheels in the lower-level control.
X