Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental and Numerical Investigation of Wheel Housing Aerodynamics on Heavy Trucks

2012-04-16
2012-01-0106
Wheel and underbody aerodynamics have become important topics in the search to reduce the aerodynamic drag of the heavy trucks. This study aims to investigate, experimentally as well as numerically, the local flow field around the wheels and in the wheel housing on a heavy truck; and how different approaches to modelling the wheel rotation in CFD influences the results. Emphasis is on effects due to ground simulation, and both moving ground and wheel rotation were requirements for this study. A 1:4-scale model of part of a heavy truck geometry has been developed. During the model design numerical simulations were used to optimise the shape, in order to replicate the flow field near the wheel of a complete truck. This was done by changing the flow angles of the incoming and exiting flows, and by keeping the mass flow rates in to, and out of, the wheel housing at the same ratios as in a reference full size vehicle.
Technical Paper

Numerical Investigation of Blockage Effects on Heavy Trucks in Full Scale Test Conditions

2016-04-05
2016-01-1607
The effect of blockage due to the presence of the wind tunnel walls has been known since the early days of wind tunnel testing. Today there are several blockage correction methods available for correcting the measured aerodynamic drag. Due to the shape of the test object, test conditions and wind tunnel dimensions the effect on the flow may be different for two cab variants. This will result in a difference in the drag delta between so-called open-road conditions and the wind tunnel. This makes it more difficult to evaluate the performance of two different test objects when they are both tested in a wind tunnel and simulated in CFD. A numerical study where two different cab shapes were compared in both open road condition, and in a digital wind tunnel environment was performed.
Journal Article

Scania’s New CD7 Climatic Wind Tunnel Facility for Heavy Trucks and Buses

2016-04-05
2016-01-1614
Scania AB has opened the new CD7 climatic wind tunnel test facility, located at the Scania Technical Center in Södertälje, Sweden. This facility is designed for product development testing of heavy trucks and buses in a range of controllable environments. Having this unique test environment at the main development center enables Scania to test its vehicles in a controlled repeatable environment year round, improving lead times from design to production, producing higher quality and more reliable vehicles, and significantly improves the capability for large vehicle performance research. This state-of-the-art facility provides environmental conditions from -35°C to 50°C with humidity control from 5 to 95 percent. The 13 m2 nozzle wind tunnel can produce wind speeds up to 100 km/h. The dynamometer is rated at 800 kW for the rear axle and 150 kW for the front axle, which also has ±10° yaw capability.
X