Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A New Narrowband Active Noise Control System in the Presence of Frequency Mismatch and its Application for Steady-State Blower Noise

2015-06-15
2015-01-2214
In order to reduce high-frequency harmonic noise produced by the blower in the auxiliary system of a fuel cell vehicle (FCV), a narrowband active noise control (ANC) method instead of conventional passive mufflers is adopted since the blower demands clean air condition and expects good acoustic performance. However, in ANC practical applications, the frequency difference between reference signal and actual primary signal, i.e., frequency mismatch (FM), can significantly degrade the high-frequency performance of narrowband ANC system. In this paper, a new narrowband ANC system is proposed to compensate for the performance degeneration due to the existence of FM and improve noise reduction at high frequencies. The proposed system consists of two parts: the Filtered Error Least Mean Square (FELMS) algorithm filtering the primary signals at wide frequency range other than those at the targeted frequencies, and the FM removal algorithm proposed by Yegui Xiao.
Technical Paper

CAN Communication Applying on the Performance Evaluating of Electronic Brake System for Commercial Vehicle

2006-10-31
2006-01-3582
In the performance evaluating of Electronic Brake System, conventional test methods have some inconvenience in existence. For example, the fixing of pressure sensors and wheel speed sensors is restrained by the installation position, and the precision of measuring is prone to be affected by the environment conditions. Since Electronic Brake System is featured by CAN (Controller Area Network) communication, special testing instrument can be connected with CAN bus, monitoring signals transmitting on the bus. This paper outlines the results of the study performed to analyze the application of CAN communication in the way of performance evaluation of Electronic Braking System.
Technical Paper

Development of Model Based Closed Loop Control Strategy of SCR System for Heavy-Duty Diesel Engines

2017-10-08
2017-01-2383
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Journal Article

Study on Active Noise Control of Blower in Fuel Cell Vehicle under Transient Conditions

2015-06-15
2015-01-2218
Blower is one of the main noise sources of fuel cell vehicle. In this paper, a narrowband active noise control (ANC) model is established based on adaptive notch filter (ANF) to control the high-frequency noise produced by the blower. Under transient conditions, in order to reduce the frequency mismatch (FM) of ANC for blower, a new Frequency Mismatch Filtered-Error Least Mean Square algorithm (FM-FELMS) is proposed to attenuate blower noise under transient conditions. According to the theoretical analysis and simulation, the proposed algorithm has an excellent noise reduction performance at relatively high blower speed. While for the low speed working condition, the Normalized Least Mean Square (NLMS) algorithm is applied to attenuate noise. The two algorithms could be jointly utilized to control the blower noise actively.
X