Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Anhydrous Polyalkylene Glycol Hydraulic Fluids

2000-09-11
2000-01-2557
There is an ongoing interest in identifying new biodegradable hydraulic fluid compositions that may be used as alternatives to mineral oil in many hydraulic applications such as mobile off-highway equipment. To date, many basestocks have been proposed including: vegetable oils, polyol esters, diesters, synthetic hydrocarbons and others. One basestock is gaining interest as alternative, biodegradable, fire-resistant hydraulic fluid; anhydrous poly(alkylene glycol) (PAG) fluids. However, the use of these fluids is not new; they are simply being rediscovered. The objective of this paper is to provide an overview of the discovery and development of anhydrous PAGs as hydraulic fluids. This discussion will include: an overview of PAG chemistry, properties and hydraulic pump performance.
Technical Paper

Effect of Low Molecular Weight Carboxylic Acids on Hydraulic Pump Wear

1994-09-01
941751
All types of hydraulic fluids may encounter thermal excursions at some point during their lifetime in use. When this occurs, there is the potential for the formation of degradation by-products. For most hydraulic fluids, including water-glycols, these degradation by-products include various low molecular weight carboxylic acids, e.g. formic acid and acetic acid. This paper describes the potential formation of these acids and the impact of their presence on wear and corrosion of hydraulic systems.
Technical Paper

Historical Overview of the Development of Water-Glycol Hydraulic Fluids

1995-09-01
952076
Because of on-board fire problems during World War II, the us Navy initiated a program to develop hydraulic fluids that were more fire-resistant than the mineral oils that were in use at that time. Water-glycol hydraulic fluids were subsequently developed and first commercialized in 1947 which offered vastly improved fire resistance relative to mineral oils. Since 1947, in addition to formulation changes, there is significantly greater understanding of the impact of these changes on pump wear performance. This paper will present a selected overview of water-glycol formulation chemistry, some of the fluid formulation issues that have been encountered and the evolutionary improvement of hydraulic pump wear performance.
Technical Paper

Hydraulic Fluids: Foaming, Air Entrainment, and Air Release - A Review

1997-09-08
972789
The importance of minimizing air entrainment and enhancing air release in hydraulic fluids has been recognized for over 40 years. These properties are dependent on the composition of hydraulic fluids, especially on the presence of contaminants which inhibit air release and additives which promote it. One objective of this paper is to present an overview of this critically important technology as it has unfolded over the last 40 years. The second objective of this paper is to integrate into this summary recent research results on the impact of additives on air release properties.
Technical Paper

Hydraulic System Cavitation: Part II – A Review of Hardware Design – Related Effects

1999-09-14
1999-01-2857
Cavitation erosion is one of the most important causes of loss of hydraulic pump efficiency, wear and even failure. Although cavitation process is often understood, there is typically little understanding of the joint role of the hydraulic fluid, which is a component of the system, and the operation of the hydraulic pump. In this paper, an overview is provided that describes the fluid properties that most impact on cavitation damage, the cavitation process within the pump and components and the use of computer simulation to prove improved designs that minimize hydraulic cavitation when various types of fluids are used.
Technical Paper

Performance Map and Film Thickness Characterization of Hydraulic Fluids

1995-09-01
952091
A new approach is presented for the evaluation of hydraulic fluids for pump wear performance. The approach uses performance maps developed in terms of rolling and sliding velocities to establish lubrication and failure regimes for test fluids. Testing pathways within the performance map can determine the fluid attributes for wear, scuffing and traction (friction). The measurement of oil film thickness with optical interferometry is used as part of a comprehensive approach for fluid evaluation. These measurements allow the lubricated contact itself to provide the viscous film forming properties of the fluid. An “effective” pressure-viscosity coefficient is determined for a range of fluid types. Performance mapping, together with film thickness measurements, provide an insight into the fundamental chemical and physical attributes of the fluid. The new approach provides an alternative to the limited reliability of bench tests and the time consuming and expensive hydraulic pump tests.
X