Refine Your Search

Topic

Search Results

Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

A Study of Lean Burn Pre-Chamber Concept in a Heavy Duty Engine

2019-09-09
2019-24-0107
Due to stringent emission standards, the demand for higher efficiency engines has been unprecedentedly high in recent years. Among several existing combustion modes, pre-chamber spark ignition (PCSI) emerges to be a potential candidate for high-efficiency engines. Research on the pre-chamber concept exhibit higher indicated efficiency through lean limit extension while maintaining the combustion stability. In this study, a unique pre-chamber geometry was tested in a single-cylinder heavy-duty engine at low load lean conditions. The geometry features a narrow throat, which was designed to be packaged inside a commercial diesel injector pocket. The pre-chamber was fueled with methane while the main chamber was supplied with an ethanol/air mixture.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Technical Paper

Analysis of Soot Particles in the Cylinder of a Heavy Duty Diesel Engine with High EGR

2015-09-06
2015-24-2448
When applying high amount of EGR (exhaust gas recirculation) in Partially Premixed Combustion (PPC) using diesel fuel, an increase in soot emission is observed as a penalty. To better understand how EGR affects soot particles in the cylinder, a fast gas sampling technique was used to draw gas samples directly out of the combustion chamber in a Scania D13 heavy duty diesel engine. The samples were characterized on-line using a scanning mobility particle sizer for soot size distributions and an aethalometer for black carbon (soot) mass concentrations. Three EGR rates, 0%, 56% and 64% were applied in the study. It was found that EGR reduces both the soot formation rate and the soot oxidation rate, due to lower flame temperature and a lower availability of oxidizing agents. With higher EGR rates, the peak soot mass concentration decreased. However, the oxidation rate was reduced even more.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

CFD Simulations of Pre-Chamber Jets' Mixing Characteristics in a Heavy Duty Natural Gas Engine

2015-09-01
2015-01-1890
The effect of pre-chamber volume and nozzle diameter on performance of pre-chamber ignition device in a heavy duty natural gas engine has previously been studied by the authors. From the analysis of recorded pre- and main chamber pressure traces, it was observed that a pre-chamber with a larger volume reduced flame development angle and combustion duration while at a given pre-chamber volume, smaller nozzle diameters provided better ignition in the main chamber. The structure of pre-chamber jet and its mixing characteristics with the main chamber charge are believed to play a vital role, and hence CFD simulations are performed to study the fluid dynamic aspects of interaction between the pre-chamber jet and main chamber charge during the period of flame development angle, i.e. before main chamber ignition. It has been observed that jets from a larger pre-chamber penetrates through the main chamber faster due to higher momentum and generates turbulence in the main chamber earlier.
Technical Paper

Comparison of Kinetic Mechanisms for Numerical Simulation of Methanol Combustion in DICI Heavy-Duty Engine

2019-04-02
2019-01-0208
The combustion process in a homogeneous charge compression ignition (HCCI) engine is mainly governed by ignition wave propagation. The in-cylinder pressure, heat release rate, and the emission characteristics are thus largely driven by the chemical kinetics of the fuel. As a result, CFD simulation of such combustion process is very sensitive to the employed reaction mechanism, which model the real chemical kinetics of the fuel. In order to perform engine simulation with a range of operating conditions and cylinder-piston geometry for the design and optimization purpose, it is essential to have a chemical kinetic mechanism that is both accurate and computational inexpensive. In this paper, we report on the evaluation of several chemical kinetic mechanisms for methanol combustion, including large mechanisms and skeletal/reduced mechanisms.
Journal Article

Compression Ratio and Intake Air Temperature Effect on the Fuel Flexibility of Compression Ignition Engine

2019-09-09
2019-24-0110
The effect of compression ratio (CR) and intake air temperature on the combustion characteristics of fuels with different octane ratings were investigated on a single-cylinder heavy duty engine. The study focused on Primary Reference Fuels (PRFs) and commercial grade diesel with octane numbers ranging from 0 to 100. The engine was configured at a CR of 11.5:1, which is lower than typical heavy-duty compression ignition CI engines. This aims to compare the fuels’ burning regime with recently reported measurements at CR17:1. Experiments were performed at different intake air temperatures of 20 to 80 °C and net indicated mean effective pressure (IMEPNet) of 5 to 20 bar. The injection rates have been characterized to determine the hydraulic delay of the injector and thus define the actual ignition delay time. At low loads, diesel-like fuels were found to burn in partially premixed combustion (PPC) mode whereas high octane fuels did not ignite.
Technical Paper

Effect of Injection Timing on the Ignition and Mode of Combustion in a HD PPC Engine Running Low Load

2019-04-02
2019-01-0211
This work aims to study the effect of fuel inhomogeneity on the ignition process and subsequent combustion in a compression ignition Partially Premixed Combustion (PPC) engine using a primary reference fuel (PRF) in low load conditions. Five cases with injection timings ranging from the start of injection (SOI) at -70 crank angle degrees (CAD) to -17 CAD have been studied numerically and experimentally in a heavy duty (HD) piston bowl geometry. Intake temperature is adjusted to keep the combustion phasing constant. Three dimensional numerical simulations are performed in a closed cycle sector domain using the Reynolds Averaged Navier-Stokes (RANS) formulation with k-ϵ turbulence closure and direct coupling of finite rate chemistry. The results are compared with engine experiments. The predicted trends in required intake temperature and auto-ignition location for a constant combustion phasing are consistent with experiments.
Technical Paper

Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine

2013-04-08
2013-01-1615
The liquid phase penetration of diesel sprays under reacting conditions is measured in an optical heavy-duty Direct Injection (DI) diesel engine. Hot gas reservoirs along the diffusion flames have previously been shown to affect the liftoff length on multi hole nozzles. The aim of this study is to see if they also affect the liquid length. The inter-jet spacing is varied together with the Top Dead Center density and the inlet temperature. To avoid unwanted interferences from the natural flame luminosity the illumination wavelength is blue shifted from the black body radiation spectrum and set to 448 nm. Filtered Mie scattered light from the fuel droplets is recorded with a high speed camera. The liquid fuel penetration is evaluated from the start of injection to the quasi steady phase of the jets. Knowledge of jet-jet interaction effects is of interest for transferring fundamental understanding from combustion vessels to practical engine applications.
Technical Paper

Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2015-04-14
2015-01-0867
It has previously been shown by the authors that the pre-chamber ignition technique operating with fuel-rich pre-chamber combustion strategy is a very effective means of extending the lean limit of combustion with excess air in heavy duty natural gas engines in order to improve indicated efficiency and reduce emissions. This article presents a study of the influence of pre-chamber volume and nozzle diameter on the resultant ignition characteristics. The two parameters varied are the ratio of pre-chamber volume to engine's clearance volume and the ratio of total area of connecting nozzle to the pre-chamber volume. Each parameter is varied in 3 steps hence forming a 3 by 3 test matrix. The experiments are performed on a single cylinder 2L engine fitted with a custom made pre-chamber capable of spark ignition, fuel injection and pressure measurement.
Technical Paper

Effect of Relative Mixture Strength on Performance of Divided Chamber ‘Avalanche Activated Combustion’ Ignition Technique in a Heavy Duty Natural Gas Engine

2014-04-01
2014-01-1327
This article deals with application of a pre-chamber type ignition device in a heavy duty engine operated with natural gas. A particular pre-chamber ignition strategy called Avalanche Activated Combustion (originally ‘Lavinia Aktyvatsia Gorenia’ in Russian), commonly referred to as LAG-ignition process, has been studied by performing a parametric study of various pre- and main chamber mixture strength combinations. This strategy was first proposed in 1966 and has been mostly applied in light duty automotive engines. A majority of published data are results from developmental studies but the fundamental mechanism of the LAG-ignition process is unclear to date. To the best of authors' knowledge, the study presented in this article is the first generalized study to gain deeper understanding of the LAG-ignition process in heavy duty engines operating with natural gas as fuel for both chambers.
Technical Paper

Effect of Start of Injection on the Combustion Characteristics in a Heavy-Duty DICI Engine Running on Methanol

2017-03-28
2017-01-0560
Methanol as an alternative fuel in internal combustion engines has an advantage in decreasing emissions of greenhouse gases and soot. Hence, developing of a high performance internal combustion engine operating with methanol has attracted the attention in industry and academic research community. This paper presents a numerical study of methanol combustion at different start-of-injection (SOI) in a direct injection compression ignition (DICI) engine supported by experimental studies. The aim is to investigate the combustion behavior of methanol with single and double injection at close to top-dead-center (TDC) conditions. The experimental engine is a modified version of a heavy duty D13 Scania engine. URANS simulations are performed for various injection timings with delayed SOI towards TDC, aiming at analyzing the characteristics of partially premixed combustion (PPC).
Technical Paper

Effects of EGR and Intake Pressure on PPC of Conventional Diesel, Gasoline and Ethanol in a Heavy Duty Diesel Engine

2013-10-14
2013-01-2702
Partially Premixed Combustion (PPC) has the potential of simultaneously providing high engine efficiency and low emissions. Previous research has shown that with proper combination of Exhaust-Gas Recirculation (EGR) and Air-Fuel equivalence ratio, it is possible to reduce engine-out emissions while still keeping the engine efficiency high. In this paper, the effect of changes in intake pressure (boost) and EGR fraction on PPC engine performance (e.g. ignition delay, burn duration, maximum pressure rise rate) and emissions (carbon monoxide (CO), unburned hydrocarbon (UHC), soot and NOX) was investigated in a single-cylinder, heavy-duty diesel engine. Swedish diesel fuel (MK1), RON 69 gasoline fuel and 99.5 vol% ethanol were tested. Fixed fueling rate and single injection strategy were employed.
Journal Article

Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011-04-12
2011-01-1383
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Technical Paper

Experiments and Simulation of a Six-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine

2000-10-16
2000-01-2867
A 6-cylinder truck engine was modified to run in HCCI-mode. The aim was to show whether or not it is possible having HCCI run a multi-cylinder engine, to provide brake values of emissions and efficiency and to verify models for engine system simulation. The work proved that it is feasible to use HCCI in multi-cylinder engines with high brake efficiency. Emissions' strong dependence on inlet temperature and octane number was demonstrated. The numerical models simulated the mean effective pressure with high precision, while inlet and exhaust pressures were less accurate, mainly due to the limitations of the turbo maps used.
Technical Paper

Flow Field Measurements inside a Piston Bowl of a Heavy-Duty Diesel Engine

2011-08-30
2011-01-1835
Combination of flow field measurements, shown in this paper, give new information on the effect of engine run parameters to formation of different flow fields inside piston bowl. The measurements were carried out with particle image velocimetry (PIV) technique in optical engine. Good set of results was achieved even though the feasibility of this technique in diesel engines is sometimes questioned. Main challenge in diesel engines is background radiation from soot particles which is strong enough to conceal the PIV signal. Window staining in diesel engine is also a problem, since very high particle image quality is needed for velocity analysis. All measurements were made in an optical heavy-duty diesel engine. Optical design of engine was Bowditch type [1]. The engine was charged and equipped with exhaust gas recirculation (EGR). The exhaust gas level was monitored by oxygen concentration and the level was matched to former soot concentration measurements.
X