Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fuel-Borne Catalyst Assisted DPF regeneration on a Renault Truck MD9 Engine Outfitted with SCR

2007-07-23
2007-01-1934
Diesel urban buses and refuse trucks are part of the particulate emissions sources that affect city air quality. In order to reduce particulate pollutant emissions, a development program has been carried out based on a Euro 4 engine with a DPF technology. Currently, for Euro 4 compliance, SCR is the favoured technology. To avoid a completely new development, the Exoclean™ DPF system was located after the SCR. Catalyst. The severe operating conditions and the location of the DPF necessitated the development of an active system based on the association of a DPF and a Fuel-Borne Catalyst. A Renault Trucks MD9 engine was used. This work was funded by ADEME (French Agency for Environment and Energy Management). Due to severe stop and go duty cycles and the interest to fit the DPF downstream of the SCR, this study shows the benefit of using an active DPF with an FBC to ensure full regeneration even at low temperatures.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
X