Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Joint Work to Develop a Predictive 1D Modelling Approach for Heavy Duty Gaseous Fueled Engines through Experiments and 3D CFD Simulations

2023-08-28
2023-24-0007
The present paper reports experimental and numerical research activities devoted to deeply characterize the behavior and performance of a Heavy Duty (HD) internal combustion engine fed by compressed natural gas (CNG). Current research interest in HD engines fed by gaseous fuels with low C/H ratios is related to the well-known potential of such fuels in reducing carbon dioxide emissions, combined to extremely low particulate matter emissions too. Moreover, methane, the main CNG component, can be produced through alternative processes relying on renewable sources, or in the next future replaced by methane/H2 blends. The final goal of the presented investigations is the development of a predictive 0D combustion submodel within the framework of a 1D numerical simulation platform.
Technical Paper

Experimental and Numerical Investigation of a Particle Filter Technology for NG Heavy-Duty Engines

2023-04-11
2023-01-0368
The forthcoming introduction of the EURO VII regulation requires urgent strategies and solutions for the reduction of sub-23 nm particle emissions. Although they have been historically considered as particulate matter-free, the high interest for Natural Gas (NG) Heavy-Duty engines in the transport sector, demands their compliance with the new proposed regulations. In order to obtain high conversion of gas pollutants and a strong abatement of the emitted particles, the use of Particle Filters in NG aftertreatment (CPF) in conjunction with the Three-Way Catalyst (TWC) may represent an attractive and feasible solution. Performances of a cordierite filter were explored through an extensive experimental campaign both in Steady-State conditions and during transient engine maneuvers that involved a whole analysis of the emitted particles in terms of number and mass.
Technical Paper

Methane Conversion and Ammonia Formation Model over a Pd-Rh Three-Way Catalyst for CNG Heavy-Duty Engines

2021-09-05
2021-24-0002
Research activities in the development of reliable computational models for aftertreatment systems are constantly increasing in the automotive field. These investigations are essential in order to get a complete understanding of the main catalytic processes which clearly have a great impact on tailpipe emissions. In this work, a 1D chemical reaction model to simulate the catalytic activity of a Pd/Rh Three-Way Catalyst (TWC) for a Natural Gas heavy-duty engine is presented. An extensive database of tests carried out with the use of a Synthetic Gas Bench (SGB) has been collected to investigate the methane abatement pathways, linked to the lambda variation and oxide formation on palladium surface. Specific steady-state tests have shown a dynamics of the methane conversion even at fixed λ and temperature conditions, essentially due to the Pd/PdO ratio.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
X