Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fast Running Loading Methodology for Ground Vehicle Underbody Blast Events

2018-04-03
2018-01-0620
A full-system, end-to-end blast modeling and simulation of vehicle underbody buried blast events typically includes detailed modeling of soil, high explosive (HE) charge and air. The complex computations involved in these simulations take days to just capture the initial 50-millisecond blast-off phase, and in some cases, even weeks. The single most intricate step in the buried blast event simulation is in the modeling of the explosive loading on the underbody structure from the blast products; it is also one of the most computationally expensive steps of the simulation. Therefore, there is significant interest in the modeling and simulation community to develop various methodologies for fast running tools to run full simulation events in quicker turnarounds of time.
Journal Article

A Novel Flight Dynamics Modeling Using Robust Support Vector Regression against Adversarial Attacks

2023-03-24
Abstract An accurate Unmanned Aerial System (UAS) Flight Dynamics Model (FDM) allows us to design its efficient controller in early development phases and to increase safety while reducing costs. Flight tests are normally conducted for a pre-established number of flight conditions, and then mathematical methods are used to obtain the FDM for the entire flight envelope. For our UAS-S4 Ehecatl, 216 local FDMs corresponding to different flight conditions were utilized to create its Local Linear Scheduled Flight Dynamics Model (LLS-FDM). The initial flight envelope data containing 216 local FDMs was further augmented using interpolation and extrapolation methodologies, thus increasing the number of trimmed local FDMs of up to 3,642. Relying on this augmented dataset, the Support Vector Machine (SVM) methodology was used as a benchmarking regression algorithm due to its excellent performance when training samples could not be separated linearly.
Standard

AIRBORNE RECORDER FILE FORMAT

1992-01-01
CURRENT
ARINC657
This document defines the characteristics necessary to standardize the airborne recorder download file format in order to facilitate data import, transcription, and exchange. A standardized data format will reduce the variety of readout equipment required for airborne recorder data transcription. This document defines the detailed architecture of the Recorder Standard Output (RSO) file. The architecture is a tagged file structure within which many different files and their formats can be supported. The structure is necessary to support newer recording requirements for flight data, data link, audio, and image recording. This structure is intended for use with all civil recorders and should support use with military recorders.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Training / Education

Advanced Concepts of GD&T ASME Y14.5 2009 - Foundational Level

This two-day foundational-level course teaches Advanced Concepts of GD&T as prescribed in the ASME Y14.5-2009 Standard. It offers an explanation of complex GD&T topics, such as the expanded use of composite position and profile tolerances, customized datum reference frames, the translation modifier, and applying GD&T to non-rigid parts. You’ll learn about functional dimensioning, form controls, the datum system, additional and complex datum feature types, expanded datum target concepts and usage on restrained parts, simultaneous, and separate requirements.
Article

Advanced simulation using the digital twin to achieve electromagnetic compatibility and electrification management in a modern UAS

2022-01-13
The aerospace industry is facing immense challenges due to increased design complexity and higher levels of integration, particularly in the electrification of aircraft. These challenges can easily impact program cost and product time to market. System electrification and electromagnetic compatibility (EMC) have become critical issues today. In the context of 3D electromagnetics, EMC electromagnetic compatibility ensures the original equipment manufacturer (OEM) that radiated emissions from various electronic devices, such as avionics or the entire aircraft for that matter, do not interfere with other electronic products onboard the aircraft.
Magazine

Aerospace & Defense Technology: August 2021

2021-08-01
Thermal Management Techniques in Avionics Cooling Curing the Porosity Problem in Additive Manufacturing Space-Qualified Crystal Oscillators Reimagining Automated Test During a Pandemic EW: New Challenges, Technologies, and Requirements Software Enables New-Age, Flexible Test Solution for Analog and Digital Radios Formal Process Modeling to Improve Human-Decision-Making During Test and Evaluation Range Control Using the Innoslate software tool to formally model the process of conducting test range events can expose previously overlooked ambiguities and identify high-value decision points? Test and Evaluation of Autonomy for Air Platforms Tools, approaches, and insights to confidently approach the safe, secure, effective, and efficient testing of autonomy on air platforms.
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
CURRENT
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Aircraft Flotation Analysis

2022-12-20
CURRENT
AIR1780B
This document is divided into five parts. The first part deals with flotation analysis features and definitions to acquaint the engineer with elements common to the various methods and the meanings of the terms used. The second part identifies and describes current flotation analysis methods. Due to the close relationship between flotation analysis and runway design, methods for the latter are also included in this document. As runway design criteria are occasionally used for flotation evaluation, including some for runways built to now obsolete criteria, a listing of the majority of these criteria constitutes the third part. The fourth part of this document tabulates the most relevant documents, categorizing them for commercial and civil versus military usage, by military service to be satisfied, and by type of pavement. This document concludes with brief elaborations of some concepts for broadening the analyst’s understanding of the subject.
Journal Article

Algorithm Development for Avoiding Both Moving and Stationary Obstacles in an Unstructured High-Speed Autonomous Vehicular Application Using a Nonlinear Model Predictive Controller

2020-10-19
Abstract The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model.
Training / Education

Applications of GD&T ASME 14.5 - 1994 & 2009 Foundational Level

This course teaches the thought processes involved in assigning GD&T to components, and it changes the way many engineers think about part tolerancing. The course focuses on what constitutes good and poor drawing practices, common dimensioning methods used in industry, using GD&T to communicate system functions on component dimensions, and the logic of how to apply GD&T to components. You’ll also learn how to select datum features and how to fully define component surfaces using GD&T. Establishing tolerance values is not covered.   
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Journal Article

Building Multiple Resolution Modeling Systems Using the High-Level Architecture

2019-09-16
2019-01-1917
The modeling and simulation pyramid in defense states it clearly: Multi-Level modeling and simulation are required. Models and simulations are often classified by the US Department of Defense into four levels—campaign, mission, engagement, and engineering. Campaign simulation models are applied for evaluation; mission-level simulations to experiment with the integration of several macro agents; engagement simulations in engineered systems development; and engineering-level simulation models with a solid foundation in structural physics and components. Models operating at one level must be able to interact with models at another level. Therefore, the cure (“silver bullet”) is very clear: a comprehensive framework for Multiple Resolution Modeling (MRM) is needed. In this paper, we discuss our research about how to construct MRM environments.
Technical Paper

Built-In-Test for Fiber Optic Links

2023-03-07
2023-01-1019
This work covers the historical development of Built-In-Test (BIT) for fiber optic interconnect links for aerospace applications using Optical Time Domain Reflectometry (OTDR) equipped transceivers. The original failure modes found that installed fiber optic links must be disconnected before diagnosis could begin, often resulting in “no fault found” (NFF) designation. In fact, the observed root cause was that most (85%) of the fiber optic link defects were produced by contamination of the connector end faces. In March of 2006, a fiber optics workshop was held with roughly sixty experts from system and component manufacturers to discuss the difficulties of fiber optic test in aerospace platforms. During this meeting it was hypothesized that Optical Time Domain Reflectometry (OTDR) was feasible using an optical transceiver transmit pulse as a stimulus. The time delay and amplitude of received reflections would correlate with the position and severity of link defects, respectively.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
X