Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Advanced Inflatable Airlock System for EVA

2002-07-15
2002-01-2314
The Advanced Inflatable Airlock (AIA) System is currently being developed for the 2nd Generation Reusable Launch Vehicle (RLV). The objective of the AIA System is to greatly reduce the cost associated with performing extravehicular activity (EVA) from the RLV by reducing launch weight and volume from previous hard airlock systems such as the Space Shuttle and Space Station airlocks. The AIA System builds upon previous technology from the TransHab inflatable structures project, from Space Shuttle and Space Station Airlock systems, and from terrestrial flexible structures projects. The AIA system design is required to be versatile and capable of modification to fit any platform or vehicle needing EVA capability. This paper discusses the AIA conceptual design and key features that will help meet the 2nd Generation RLV program goals of reduced cost and program risk.
Technical Paper

An Exergy-Based Methodology for Decision-Based Design of Integrated Aircraft Thermal Systems

2000-10-10
2000-01-5527
This paper details the concept of using an exergy-based method as a thermal design methodology tool for integrated aircraft thermal systems. An exergy-based approach was applied to the design of an environmental control system (ECS) of an advanced aircraft. Concurrently, a traditional energy-based approach was applied to the same system. Simplified analytical models of the ECS were developed for each method and compared to determine the validity of using the exergy approach to facilitate the design process in optimizing the overall system for a minimum gross takeoff weight (GTW). The study identified some roadblocks to assessing the value of using an exergy-based approach. Energy and exergy methods seek answers to somewhat different questions making direct comparisons awkward. Also, high entropy generating devices can dominate the design objective of the exergy approach.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Technical Paper

Breadboard Development of the Advanced Inflatable Airlock System for EVA

2003-07-07
2003-01-2449
The advanced inflatable airlock (AIA) system was developed for the Space Launch Initiative (SLI). The objective of the AIA system is to greatly reduce the cost associated with performing extravehicular activity (EVA) from manned launch vehicles by reducing launch weight and volume from previous hard airlock systems such as the Space Shuttle and Space Station airlocks. The AIA system builds upon previous technology from the TransHab inflatable structures project, from Space Shuttle and Space Station Airlock systems, and from terrestrial flexible structures projects. The AIA system design is required to be versatile and capable of modification to fit any platform or vehicle needing EVA capability. During the basic phase of the program, the AIA conceptual design and key features were developed to help meet the SLI program goals of reduced cost and program risk.
Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Technical Paper

Charging Load Estimation for a Fleet of Autonomous Vehicles

2024-04-09
2024-01-2025
In intelligent surveillance and reconnaissance (ISR) missions, multiple autonomous vehicles, such as unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), coordinate with each other for efficient information gathering. These vehicles are usually battery-powered and require periodic charging when deployed for continuous monitoring that spans multiple hours or days. In this paper, we consider a mobile host charging vehicle that carries distributed sources, such as a generator, solar PV and battery, and is deployed in the area where the UAVs and UGVs operate. However, due to uncertainties, the state of charge of UAV and UGV batteries, their arrival time at the charging location and the charging duration cannot be predicted accurately.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Technical Paper

Effects of Framing on Tradespace Exploration Decision-Making for Vehicle Design

2024-04-09
2024-01-2660
Tradespace exploration (TSE) describes the activity occurring early in the design process through which stakeholders explore a broad solution space in search of more-optimal alternatives. In doing so, these stakeholders attempt to maximize the utility inherent in the chosen solution while understanding the tradeoffs and compromises that may be required to find an acceptable solution. In the field of vehicle design, tradespaces are often comprised of vast amounts of alternatives which increases the complexity of the decision-making process. Additionally, the number of stakeholders has grown, as decision-makers seek to include more variety in both perspectives and expertise. As such, decision-making stakeholders can often find themselves working at odds and attempting to maximize vastly different objectives in the process. One way to rectify these contrasting viewpoints can be to intentionally introduce a group framing prior to the start of decision making.
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

2006-07-17
2006-01-2236
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
X