Refine Your Search

Topic

Search Results

Technical Paper

An Analytical Study of Exhaust Gas Heat Loss in a Piston Engine Exhaust Port

1976-02-01
760767
A mathematical model of exhaust port heat loss was evolved using an electrical analog of heat transfer. Good correlation with experimental results is demonstrated for comparatively simple design variables. The critical effects of limiting metal-to-metal contact between port liner and port wall is predicted. The limitations of the present model for studies involving complex design variables is discussed.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Analysis of the Flow and Combustion Processes of a Three-Valve Stratified Charge Engine with a Small Prechamber

1974-02-01
741170
The flow and combustion processes of a three-valve, stratified charge engine with small prechamber are examined for exhaust emissions. The exhaust emissions from a single-cylinder version of this engine are shown to depend on the internal flow processes as well as mixture supply stoichiometry. A theoretically-based simulation model of the engine flow and combustion processes is described. Model predictions are compared with time-resolved prechamber air-fuel ratio measurements made during intake and compression strokes. These comparisons are used to illustrate and describe the complex flow phenomena which take place in this engine. The combustion process is then examined with the aid of calculations using the simulation model. The complexity of the combustion process is illustrated by showing that, in addition to burned gas temperatures, the cylinder and prechamber burned gas air-fuel ratios change with time.
Technical Paper

Characterization of Knock in a Spark-Ignition Engine

1989-02-01
890156
Spark-ignition engine knock was characterized in terms of when during the engine cycle and combustion process knock occurred and its magnitude or intensity. Cylinder pressure data from a large number of successive individual cycles were generated from a single-cylinder engine of hemispherical chamber design over a range of operating conditions where knock occurred in some or all of these cycles. Mean values and distributions of following parameters were quantified: knock occurrence crank angle, knock intensity, combustion rate and the end-gas thermodynamic state. These parameters were determined from the cylinder pressure data on an individual cycle basis using a mass-burn-rate analysis. The effects of engine operating variables on these parameters were studied, and correlations between these parameters were examined.
Technical Paper

Comparison of NOx Level and BSFC for HPL EGR and LPL EGR System of Heavy-Duty Diesel Engine

2007-08-05
2007-01-3451
Diesel engines are the most commonly used power plant of freight and public transportations in the world. Also, the newly developed injection system, Common Rail system, increases the demands for both light and heavy duty diesel vehicles. On the other hand, stringent emission regulations are being proposed with growing concern on NOx and PM emissions from diesel engines. Future emission regulations require advanced emission control technologies, such as EGR and SCR. Exhaust gas recirculation (EGR) is a commonly used technique to reduce NOx emission. In this paper, a model-based investigation was conducted to compare the effect of high pressure loop (HPL) EGR and low pressure loop (LPL) EGR system on NOx level and BSFC of a heavy-duty diesel engine. A WAVE model was created to simulate EURO 3 engine and each component of the engine was modeled using CATIA and WaveMesher.
Technical Paper

Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions

1979-02-01
790291
A computer simulation of the four-stroke spark-ignition engine cycle has been developed for studies of the effects of variations in engine design and operating parameters on engine performance, efficiency and NO emissions. The simulation computes the flows into and out of the engine, calculates the changes in thermodynamic properties and composition of the unburned and burned gas mixtures within the cylinder through the engine cycle due to work, heat and mass transfers, and follows the kinetics of NO formation and decomposition in the burned gas. The combustion process is specified as an input to the program through use of a normalized rate of mass burning profile. From this information, the simulation computes engine power, fuel consumption and NO emissions. Predictions made with the simulation have been compared with data from a single-cylinder CFR engine over a range of equivalence ratios, spark-timings and compression ratios.
Technical Paper

Effect of Fuel Properties on Diesel PM Components

2007-07-23
2007-01-1941
In this study, compositions, size distributions and activation energy in oxidation of diesel PM were investigated. Benzene (C6H6) was mixed to diesel fuel as a promoter of PM formation, and further, ferrocene (Fe(C5H5)2) was added as a promoter for oxidation processes during in-cylinder combustion and after-treatment. The effect of those additions on the PM characteristics was discussed on the basis of measured results such as SOF and dry-soot ratio in PM, primary and aggregate particle size distributions of PM, activation energy of PM oxidation, and PM components with elemental analysis. As a result, it was shown that ferrocene had special effect on the PM size distribution and the activation energy.
Technical Paper

Effect of Hydrogen as an Additive on Lean Limit and Emissions of a Turbo Gasoline Direct Injection Engine

2015-09-01
2015-01-1886
For gasoline engine, thermal efficiency can be improved by using lean burn. However, combustion instability occurs when gasoline engine is operated on lean condition. Hydrogen has features that can be used for improving combustion stability of gasoline engine. In this paper, an experimental study of hydrogen effect on lean limit was carried out using a four-cylinder 2.0L turbo gasoline direct injection engine. The engine torque was fixed at 110Nm on 1600RPM, 2000RPM and 2400RPM. The results showed that lean limit was extended and brake thermal efficiency was improved by hydrogen addition. Especially, at lower engine speed, the large improvement of lean limit was achieved. However, improvement of brake thermal efficiency was achieved at high speed. HC and CO2 emissions were decreased and NO emissions increased with hydrogen addition. CO emissions were slightly reduced with hydrogen addition.
Technical Paper

Effect of various hydrocarbons on the plasma DeNOx process

2001-09-24
2001-01-3515
Effect of various hydrocarbons on the plasma DeNOx process in simulated diesel engine operating conditions is investigated experimentally and theoretically. This paper shows the results of an extensive series of experiments on the NOx conversion effect of various hydrocarbons (methane, ethene, propene, propane) in the plasma. The effects of energy density, temperature, and the initial concentrations of hydrocarbon and oxygen are discussed and the results for each hydrocarbon are compared with one another. The energy required to convert one NO molecule is measured 13.8eV, 16.1eV, 23.2eV, 45.6eV for propene, ethene, propane, methane, respectively when energy density of 25.4J/L is delivered to the mixture of 10% O2, base N2 with 440ppm NO and 500ppm hydrocarbon at 473K, while it is 143.2eV without hydrocarbon. The best NOx conversion effect of propene among the mentioned hydrocarbons is due to the highest reaction rates of propene with O and OH.
Technical Paper

End-Gas Temperature Measurements in a DOHC Spark-Ignition Engine Using CARS

2000-03-06
2000-01-0237
CARS temperature measurements were carried out both in a constant volume combustion chamber and in a spark-ignition engine. The CARS temperature measurement under engine-like condition was validated by comparing the unburned gas temperatures for premixed propane-air flame in a constant volume combustion chamber obtained by CARS with predicted temperatures of 2-zone flame propagation simulation model. There was good agreement between the predicted temperatures and the mean values of 10 CARS measurements. The standard deviation of 10 measurements at each measuring timing was about ±40 K. End-gas temperatures were measured by CARS technique in a conventional 4-cylinder DOHC spark-ignition engine with the engine motoring and firing. The measured motoring temperature matched well with the adiabatic core temperature calculated from the measured cylinder pressure. The engine was fueled with primary reference fuel (PRF80) of 80% iso-octane and 20% n-heptane by volume.
Technical Paper

Evaluation of SOF Effects on Deposit Characteristics of the EGR Cooler Using a PM Generator

2011-04-12
2011-01-1156
The high concentration of particulate matter (PM) in diesel exhaust gas causes significant soot deposition on the wall of EGR cooler, and reduces the heat transfer performance of the EGR cooler and the reduction rate of NOx. The deposition of PM tends to be occurred more severely with "heavy wet PM," which is more frequently at the LTC (low temperature combustion) engine. The objective of this work is to evaluate the effects of soluble organic fraction (SOF) on deposit characteristics of the EGR cooler. To measure reliable mean particle concentration values and surrogate SOFs, the soot generator with SOF vaporizer was used. As for two surrogate SOFs, n-dodecane and diesel lube oil, deposit mass increased when they were injected. Especially from the experiment results, it was found that the lube oil effect was more significant than the n-dodecane effect and lube oil also had a stronger effect on reduction of thermal conductivity by filling pores in deposits.
Technical Paper

Experimental Study on DeNOx Performance by Plasma-Catalyst (Ag, Au/Al2O3) System

2002-10-21
2002-01-2705
Plasma-catalyst (Ag, Au/Al2O3) systems were applied to NOx reduction in a model lean-burn engine exhaust gas. Also, DeNOx test of real diesel exhaust gas was performed by plasma-Ag/Al2O3 system. In the case of model exhaust gas, the catalytic activity for NOx reduction was enhanced by the assistance of plasma in the wide temperature range. The NOx conversion efficiency of plasma-Ag/Al2O3 was 40∼90% under the condition of C3 H6 3200ppm (C1/NOx = 5.96) and 10% O2 over the temperature range of 250∼400°C. The plasma-Au/Al2 O3 system showed remarkable low temperature NOx reduction activity at 100∼250°C. The real engine full flow test was performed for 70% of the full load and at engine speed of 1500rpm. NOx removal of 46% from the diesel exhaust gas was achieved by the plasma-Ag/Al2O3 catalyst system at 364°C(C1/NOx = 6). In the case of higher C1/NOx = 10, the NOx conversion increased up to 73% at 381°C. Also, DeNOx engine tests were performed for full load of 1500, 2000 and 2500rpm.
Technical Paper

Experimental Study on the Oxidation of Model Gases - Propylene, N-Butane, Acetylene at Ambient Temperature by Non-Thermal Plasma and Photocatalyst

2001-09-24
2001-01-3514
Two features to facilitate chemical reactions at low temperature, non-thermal plasma and the weak dependency of photocatalyst on temperature, have been exploited by many researchers to effectively decompose hydrocarbon emissions emitted until the light-off of a three-way catalyst in spark ignition engines. To develop a realizable emissions reduction reactor, as part of such effort, this study investigates for the three model gases, propylene, n-butane and acetylene: 1) the conversion efficiency of the emissions reduction reactor, which utilizes the effect of dissociation, ionization-by-collision of the non-thermal plasma and the photocatalytic effect of TiO2, and 2) the concentrations of the products such as acetaldehyde, acetic acid, polymerized hydrocarbons and NO2. The operating parameters to obtain the plasma energy density ranging from 7.8 to 908 J/L were varied.
Technical Paper

Flame Propagation and Knock Detection Using an Optical Fiber Technique in a Spark-Ignition Engine

1993-11-01
931906
In this research, an optical system for the detection of the flame propagation under the non-knocking and knocking conditions is developed and applied to a mass produced four cylinder SI engine. The normal flames are measured and analyzed under the steady state operating conditions at various engine speeds. For knocking cycles, the flame front propagations before and after knock occurrence are simultaneously taken with cylinder pressure data. In non-knocking and knocking cycles, flame propagation shows cycle-by-cycle variations, which are quite severe especially in the knocking cycles. The normal flame propagations are analyzed at various engine speeds, and show that the flame front on the exhaust valve side becomes faster as the engine speed increases. According to the statistical analysis, knock occurence location and flame propagation process after knock can be categorized into five different types.
Technical Paper

Hydrogen Effect on the DeNOX Efficiency Enhancement of Fresh and Aged Ag/Al2O3 HC-SCR in a Diesel Engine Exhaust

2011-04-12
2011-01-1278
HC-SCR is more convenient when compared to urea-SCR, since for HC-SCR, diesel fuel can be used as the reductant which is already available onboard the vehicle. However, the DeNOX efficiency for HC-SCR is lower than that of urea-SCR in both low and high temperature windows. In an attempt to improve the DeNOX efficiency of HC-SCR, the effect of hydrogen were evaluated for the fresh and aged catalyst over 2 wt.% Ag/Al₂O₃ using a Euro-4 diesel engine. In this engine bench test, diesel fuel as the reductant was injected directly into the exhaust gas stream and the hydrogen was supplied from a hydrogen bomb. The engine was operated at 2,500 rpm and BMEP 4 bar. The engine-out NOX was around 180 ppm-200 ppm. H₂/NOX and HC₁/NOX ratios were 5, 10, 20, and 3, 6, 9, respectively. The HC-SCR inlet exhaust gas temperatures were around 215°C, 245°C, and 275°C. The catalyst volumes used in this test were 2.5L and 5L for both fresh and aged catalysts.
Technical Paper

Measurement and Analysis of Knock in a SI Engine Using the Cylinder Pressure and Block Vibration Signals

1994-03-01
940146
In this study, spark-ignition engine knock was studied experimentally. Cylinder pressure and cylinder block vibration of a four cylinder SI engine were measured. Knock characteristics, such as knock intensity, knock cycle percentage, knock occurrence crank angle, were determined from pressure and vibration signals using different analysis methods. Methods using band-pass filter, third derivative and step method, which was developed in this study, were shown to be the most suitable. The step method only used signals above threshold value during knocking and, as a result, both pressure and vibration signal analysis results with this method showed good signal-to-noise ratio. The knock intensities calculated from cylinder pressure and block vibration were proportional to each other over a wide range. It was confirmed in this study that vibration signals were useful in knock detection.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine

1976-02-01
760161
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1.
Technical Paper

Predictions of In-Cylinder Swirl Velocity and Turbulence Intensity for an Open Chamber Cup in Piston Engine

1981-02-01
810224
A flow model is presented that predicts the swirl and turbulent velocities in an open chamber, cup-in-piston I.C. engine. The swirl model is based on an integral formulation of the angular momentum equation solved with an assumed tangential velocity profile form, Vθ(r). This enables the swirl model to predict a non-solid body rotation which is a function of the inlet flow, wall shear and squish motion during the engine cycle. The mean flow model is coupled with a global K-ε model which together predict shear stresses, mixing rates and heat transfer coefficients. An integrated form of the K-ε turbulence model is used which includes the compressibility, shear and boundary layer effects. Turbulence generated by the inlet flow is included and assumed to be proportional to the velocity past the intake valve. Also, the production of turbulence due to the boundary layer effects are included.
Technical Paper

Spark-Ignition Engine Knock Control and Threshold Value Determination

1996-02-01
960496
Knock control algorithms were developed for a spark-ignition engine. Spark timing was controlled using cylinder block vibration signal. The vibration signal of a 1.5 L four cylinder spark-ignition engine was measured using an accelerometer which was attached to the cylinder block. The maximum amplitude of the bandpass-filtered accelerometer signals was used as the knock intensity. Three different spark-ignition engine knock control algorithms were tested experimentally. Two algorithms were conventional algorithms in which knock threshold values were predetermined for each engine condition. Spark timing was retarded and advanced depending on the knock intensity in one algorithm and the knock occurrence interval in the other algorithm. The third algorithm was a new algorithm in which knock threshold values were automatically corrected by monitoring knock condition.
X