Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-Stroke Externally Scavenged Engines for Range Extender Applications

2012-04-16
2012-01-1022
In this work, the authors assess the potential of the 2-stroke concept applied to Range Extender engines, proposing 3 different configurations: 1) Supercharged, Compression Ignition; 2) Turbocharged, Compression Ignition; 3) Supercharged, Gasoline Direct Injection. All the engines feature a single power cylinder of 0.49l, external air feed by piston pump and an innovative induction system. The scavenging is of the Loop type, without poppet valves, and with a 4-stroke like lubrication system (no crankcase pump). Engine design has been supported by CFD simulations, both 1D (engine cycle analysis) and 3D (scavenging, injection and combustion calculations). All the numerical models used in the study are calibrated against experiments, carried out on engines as similar as possible to the proposed ones.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Technical Paper

A Numerical Investigation on the Potentials of Water Injection as a Fuel Efficiency Enhancer in Highly Downsized GDI Engines

2015-04-14
2015-01-0393
Engine downsizing is gaining popularity in the high performance engine market sector, where a new generation of highly downsized engines with specific power outputs around or above 150 HP/litre is emerging. High-boost and downsizing, adopted to increase power density and reduce fuel consumption, have to face the increased risks of pre-ignition, knock or mega-knock. To counterbalance autoignition of fuel/air mixture, such engines usually operate with high fuel enrichments and delayed (sometimes negative) spark advances. The former is responsible for high fuel consumption levels, while the latter reduces performance and induces an even lower A/F ratio (below 11), to limit the turbine inlet temperature, with huge negative effects on BSFC.
Journal Article

A RANS-Based CFD Model to Predict the Statistical Occurrence of Knock in Spark-Ignition Engines

2016-04-05
2016-01-0581
Engine knock is emerging as the main limiting factor for modern spark-ignition (SI) engines, facing increasing thermal loads and seeking demanding efficiency targets. To fulfill these requirements, the engine operating point must be moved as close as possible to the onset of abnormal combustion events. The turbulent regime characterizing in-cylinder flows and SI combustion leads to serious fluctuations between consecutive engine cycles. This forces the engine designer to further distance the target condition from its theoretical optimum, in order to prevent abnormal combustion to severely damage the engine components just because of few individual heavy-knocking cycles. A RANS-based model is presented in this study, which is able to predict not only the ensemble average knock occurrence but also a knock probability. This improves the knock tendency characterization, since the mean knock onset alone is a poorly meaningful indication in a stochastic event such as engine knock.
Technical Paper

An Analysis on Time Scale Separation for Engine Simulations with Detailed Chemistry

2011-09-11
2011-24-0028
The simulation of combustion chemistry in internal combustion engines is challenging due to the need to include detailed reaction mechanisms to describe the engine physics. Computational times needed for coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed computer systems are exploited. For these reasons the present paper proposes a time scale separation approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The time scale separation is achieved through the estimation of a characteristic time for each of the species and the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. This allows explicit integration of the system to be carried out, and the step size is governed by tolerance requirements.
Technical Paper

An Experimental and Numerical Investigation of GDI Spray Impact over Walls at Different Temperatures

2016-04-05
2016-01-0853
Internal combustion engines performance greatly depends on the air-fuel mixture formation and combustion processes. In gasoline direct injection (GDI) engines, in particular, the impact of the liquid spray on the piston or cylinder walls is a key factor, especially if mixture formation occurs under the so-called wall-guided mode. Impact causes droplets rebound and/or deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm may remain of no negligible size, so that fuel vapor rich zones form around it leading to so-called pool-flames (flames placed in the piston pit), hence to unburned hydrocarbons (HC) and particulate matter (PM) formation. A basic study of the spray-wall interaction is here performed by directing a multi-hole GDI spray against a real shape engine piston, possibly heated, under standard air conditions.
Technical Paper

An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine

2014-04-01
2014-01-1329
The use of methane as supplement to liquid fuel is one of the solution proposed for the reduction of the internal combustion engine pollutant emissions. Its intrinsic properties as the high knocking resistance and the low carbon content makes methane the most promising clean fuel. The dual fuel combustion mode allows improving the methane combustion acting mainly on the methane slow burning velocity and allowing lean burn combustion mode. An experimental investigation was carried out to study the methane-gasoline dual fuel combustion. Methane was injected in combustion chamber (DI fuel) while gasoline was injected in the intake manifold (PFI fuel). The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycles engine representative of the most popular two-wheel vehicles in Europe.
Journal Article

Analysis of flame kinematics and cycle variation in a Port Fuel Injection Spark Ignition Engine

2009-09-13
2009-24-0057
This paper reports on the analysis of flame kinematics and cycle variation in port fuel injection (PFI) spark ignition (SI) engine. The engine was equipped with a four-valve head and with an external boost device. Different operating conditions were considered. Cycle-resolved digital imaging was used to investigate flame motion and the effects of an abnormal combustion due to the firing of fuel deposition near the intake valves and on the piston surface. Various algorithms are applied to the acquired images. Coefficients of Proper Orthogonal Decomposition (POD) were computed and used for a statistical analysis of cycle variability. The advantage is that the analysis can be run on a small number of scalar coefficients rather than on the full data set of pixel valued luminosity.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
Technical Paper

Application of Metal Oxide Gas Sensors for the Detection of Fuel Contamination in ICEs Oil

2023-08-28
2023-24-0101
In modern internal combustion engines, oil represents a real component. It carries out the essential tasks: lubrication and heat dissipation. On one hand, it directly influences the vehicle performances and, on the other hand, it is subjected to an unavoidable dirtying and degradation process during operation. For these reasons, it requires a dedicated maintenance program which traditionally consists in a scheduled substitution without the analysis of its actual state. To this purpose, the current work aims to show the potential use of nanostructured metal oxides (MOX) gas sensors to develop a new online, on-board, non-invasive device for the oil monitoring. Indeed, they could analyze the oil vapors from the recirculation pipe directly in the engine head. For this analysis, two traditional engine oils have been considered and used in the same test bench.
Technical Paper

Assessment of the Potential of Proper Orthogonal Decomposition for the Analysis of Combustion CCV and Knock Tendency in a High Performance Engine

2013-09-08
2013-24-0031
The paper reports the application of Proper Orthogonal Decomposition (POD) to LES calculations for the analysis of combustion and knock tendency in a highly downsized turbocharged GDI engine that is currently under production. In order to qualitatively match the cyclic variability of the combustion process, Large-Eddy Simulation (LES) of the closed-valve portion of the cycle is used with cycle-dependent initial conditions from a previous multi-cycle analysis [1, 2, 3]. Detailed chemical modelling of fuel's auto-ignition quality is considered through an ad-hoc implemented look-up table approach, as a trade-off between the need for a reasonable representation of the chemistry and that of limiting the computational cost of the LES simulations. Experimental tests were conducted operating the engine at knock-limited spark advance (KLSA) and the proposed knock model was previously validated for such engine setup [3].
Technical Paper

CFD Analysis and Knock Prediction into Crevices of Piston to Liner Fireland of an High Performance ICE

2019-09-09
2019-24-0006
The paper aims at defining a methodology for the prediction and understanding of knock tendency in internal combustion engine piston crevices by means of CFD simulations. The motivation for the analysis comes from a real design requirement which appeared during the development of a new high performance SI unit: it is in fact widely known that, in high performance engines (especially the turbocharged ones), the high values of pressure and temperature inside the combustion chamber during the engine cycle may cause knocking phenomena. “Standard” knock can be easily recognized by direct observation of the in-cylinder measured pressure trace; it is then possible to undertake proper actions and implement design and control improvements to prevent it with relatively standard 3D-CFD analyses.
Journal Article

Capturing Cyclic Variability in SI Engine with Group Independent Component Analysis

2015-09-06
2015-24-2415
Data decomposition techniques have become a standard approach for the analysis of 2D imaging data originating from optically accessible internal combustion engines. In particular, the method of Proper Orthogonal Decomposition (POD) has proven to be a valuable tool for the evaluation of cycle-to-cycle variability based on luminous combustion imaging and particle image velocimetry (PIV) measurements. POD basically permits to characterize the dominant structures of the process under consideration. Recently, an alternative procedure based on Independent Component Analysis (ICA) has been introduced in the engine field. Unlike POD, the method of ICA identifies the patterns corresponding to physical processes that are statistically independent. In this work, a Group-ICA approach is applied to 2D cycle-resolved images of the luminosity emitted by the combustion process. The analysis is meant to characterize cyclic variability of a port fuel injection spark ignition (PFI SI) engine.
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
Technical Paper

Characterization of Ethanol Blends Combustion Processes and Soot Formation in a GDI Optical Engine

2013-04-08
2013-01-1316
This paper deals with the evaluation of the effect of fuel properties on soot formation in a GDI (gasoline direct injection) engine. Experimental investigation was carried out in an optical 4-stroke small single cylinder engine for two-wheel vehicles. The engine displacement was 250 cc. It was equipped with an elongated piston with a wide sapphire window in the head and a quartz cylinder liner. The engine was fuelled with pure gasoline and ethanol, and ethanol/gasoline blends at 20% v/v, 50% v/v and 85% v/v. Optical techniques based on 2D-digital imaging were used to follow the combustion process and soot formation. Spectroscopic measurements were carried out in order to assess the soot evolution. Radical species such as OH and CH, related to fuel quality and to soot formation/oxidation process, were detected. Measurements were carried out at various engine speeds and loads in order to allow optical measurements and to test the engine in real conditions.
Technical Paper

Characterization of Ethanol-Gasoline Blends Combustion processes and Particle Emissions in a GDI/PFI Small Engine

2014-04-01
2014-01-1382
The objective of this paper is the evaluation of the effect of the fuel properties and the comparison of a PFI and GDI injection system on the performances and on particle emission in a Spark Ignition engine. Experimental investigation was carried out in a small single cylinder engine for two wheel vehicles. The engine displacement was 250 cc. It was equipped with a prototype GDI head and also with an injector in the intake manifold. This makes it possible to run the engine both in GDI and PFI configurations. The engine was fuelled with neat gasoline and ethanol, and ethanol/gasoline blends at 10% v/v, 50% v/v and 85% v/v. The engine was equipped of a quartz pressure transducer that was flush-mounted in the region between intake and exhaust valves. Tests were carried out at 3000 rpm and 4000 rpm full load and two different lambda conditions. These engine points were chosen as representative of urban driving conditions.
Journal Article

Characterization of Knock Tendency and Onset in a GDI Engine by Means of Conventional Measurements and a Non-Conventional Flame Dynamics Optical Analysis

2017-09-04
2017-24-0099
Gasoline direct injection (GDI) allows knock tendency reduction in spark-ignition engines mainly due to the cooling effect of the in-cylinder fuel evaporation. However, the charge formation and thus the injection timing and strategies deeply affect the flame propagation and consequently the knock occurrence probability and intensity. In particular, split injection allows a reduction of knock intensity by inducing different AFR gradient and turbulent energy distribution. Present work investigates the tendency to knock of a GDI engine at 1500 rpm full load under different injection strategies, single and double injections, obtained delivering the same amount of gasoline in two equal parts, the first during intake, the second during compression stroke. In these conditions, conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine endowed of optical accesses to the combustion chamber.
Technical Paper

Combustion Phasing Indicators for Optimized Spark Timing Settings for Methane-Hydrogen Powered Small Size Engines

2022-03-29
2022-01-0603
In the intermediate stage towards zero-emissions, use of methane-hydrogen blends in spark ignition (SI) engines could represent an attractive application. The present work investigated the relevance of empirical base rules for choosing maximum brake torque spark timing settings when using methane-hydrogen blends. A 0D/1D model was used for investigating the optimized ignition for maximizing engine output. Calibration was performed by using in-cylinder pressure data recorded on a methane fueled small size SI engine for two-wheel applications. After adaptations of the model such as valves timing, for rendering it more representative for power generation applications, the investigation was focused on how MBT spark advance was correlated to the 50% mass fraction burned mark (CA50) and peak pressure location. The fact that they were optimized for methane was found to be essential only for high concentrations of hydrogen.
Technical Paper

Combustion Process Investigation in a Small SI Engine using Optical Diagnostics

2010-10-25
2010-01-2262
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
Journal Article

Comparison between 2 and 4-Stroke Engines for a 30 kW Range Extender

2014-11-11
2014-32-0114
The paper compares two different design concepts for a range extender engine rated at 30 kW at 4500 rpm. The first project is a conventional 4-Stroke SI engine, 2-cylinder, 2-valve, equipped with port fuel injection. The second is a new type of 2-Stroke loop scavenged SI engine, featuring a direct gasoline injection and a patented rotary valve for enhancing the induction and scavenging processes. Both power units have been virtually designed with the help of CFD simulation. Moreover, for the 2-Stroke engine, a prototype has been also built and tested at the dynamometer bench, allowing the authors to make a reliable theoretical comparison with the well assessed 4-Stroke unit.
X