Refine Your Search

Topic

Search Results

Standard

Automatic Transmission Hydraulic Pump Test Procedure

2020-11-09
CURRENT
J2311_202011
This SAE Recommended Practice provides a method to determine the performance characteristics of the hydraulic oil pumps used in automatic transmissions and automatic transaxles. This document outlines the specific tests that describe the performance characteristics of these pumps over a range of operating conditions and the means to present the test data. This document is not intended to assess pump durability.
Standard

Automatic Transmission Intake Filter Test Procedure

2005-04-26
HISTORICAL
J2312_200504
This test procedure is intended to apply to hydraulic pump suction filters and strainers used in automotive automatic transmissions that include hydraulic power pumps. The various paragraphs of Section 5, “Test Procedures,” include a variety of tests and alternative tests that are not applicable to all filters and applications, so the engineer must specify which tests are to be performed for a particular application. These test procedures are intended to evaluate filter functional performance characteristics only, durability is not evaluated under this standard. Filter design requirements must be specified by the engineer on the filter assembly drawing, an applicable engineering specification, or they may be summarized on an application data sheet similar to that found in this recommended practice. See Figure 6, “Filter Assembly Application and Data Sheet.” Pressure circuit filters, both barrier and system contamination control types, are not covered under this standard.
Standard

Automatic Transmissions - Manual Control Sequence

2017-03-09
CURRENT
J915_201703
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks. This generally refers to left hand drive mechanical shift applications.
Standard

Automatic Transmissions - Schematic Diagrams

2010-04-23
HISTORICAL
J647_201004
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied) and in gear. For illustrative purposes, some typical transmissions are shown.
Standard

Automatic Transmissions - Schematic Diagrams

2019-11-19
CURRENT
J647_201911
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied), and in gear. For illustrative purposes, some typical transmissions are shown.
Standard

Automotive Transmission Terminology

2009-03-03
HISTORICAL
J645_200903
The following listed definitions are intended to establish terminology and criteria for describing the various kinds of automotive transmissions. A specific arrangement may be described by a combination of several of these definitions.
Standard

Automotive Transmission Terminology

2017-08-25
HISTORICAL
J645_201708
The following listed definitions are intended to establish terminology and criteria for describing the various kinds of automotive transmissions. A specific arrangement may be described by a combination of several of these definitions.
Standard

Compression Fatigue Life Procedure for Wet Friction Materials

2022-04-11
WIP
J2968/2
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. a. The specific purpose of this document is to define a compression fatigue life testing procedure for wet friction material. This procedure is intended as a standard for both the suppliers and end users. The only variables selected by the supplier or user of the friction system are: a. Friction Material b. Fluid c. Maximum Load d. Fatigue Test Cycle requirements These variables must be clearly identified when reporting the results of this test. If any of the test parameters or system hardware as described in this document are changed, other than the variables above, the data may not be reported as having been obtained using this procedure.
Standard

Flywheels for Engine-Mounted Torque Converters

2012-06-11
CURRENT
J927_201206
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for engine flywheel mounted torque converters. Tables 1A and 1B and Figure 1 give dimensions for flywheels mounted-type torque converters. For torque converters using drive ring overcenter type disconnect clutch, see SAE J620.
Standard

GLOSSARY OF TERMS—LUBRICATED FRICTION SYSTEMS

1996-07-01
HISTORICAL
J1646_199607
This SAE Recommended Practice defines the principal terms and equations pertaining to automotive automatic transmission clutch plate, band, or other wet-friction systems. The terms apply directly to friction-system testing as is typically conducted on inertia-stop test equipment. Some terms can be directly applied to the analysis of friction in the transmission or brake assembly and other friction-test equipment. The glossary presents terms used to describe the set-up, testing, and results of tests as shown in Figure 1, which were taken on a clutch SAE No. 2 machine. The glossary is intended to provide a collection of definitions in the hope of eliminating confusion in terminology and a common set of terms for improving the state-of-the-art of friction-system development and their application to passenger cars and trucks. This document focuses on the terminology of friction-system testing. References for this type of testing are shown in Section 2.
Standard

Glossary of Terms - Lubricated Friction Systems

2012-03-19
CURRENT
J1646_201203
This SAE Recommended Practice defines the principal terms and equations pertaining to automotive automatic transmission clutch plate, band, or other wet-friction systems. The terms apply directly to friction-system testing as is typically conducted on inertia-stop test equipment. Some terms can be directly applied to the analysis of friction in the transmission or brake assembly and other friction-test equipment. The glossary presents terms used to describe the set-up, testing, and results of tests as shown in Figure 1, which were taken on a clutch SAE No. 2 machine. The glossary is intended to provide a collection of definitions in the hope of eliminating confusion in development and their application to passenger cars and trucks. This document focuses on the terminology of friction-system testing. References for this type of testing are shown in Section 2.
Standard

HYDRODYNAMIC DRIVE TEST CODE

1989-06-01
HISTORICAL
J643_198906
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed. b Input speed versus speed ratio and output speed. c Efficiency versus speed ratio and output speed. d Capacity factor versus speed ratio and output speed. e Input torque versus input speed. NOTE: For more information about these characteristics and the design of hydrodynamic drives, see "Design Practices--Passenger Car Automatic Transmissions," SAE Advances in Engineering, Vol. 5.
Standard

Hydrodynamic Drive Test Code

2011-04-04
HISTORICAL
J643_201104
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, see “Design Practices—Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE18 or AE29
Standard

Hydrodynamic Drive Test Code

2018-12-05
HISTORICAL
J643_201812
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
X