Refine Your Search

Topic

Search Results

Technical Paper

A Study on the Application of Turbo Expansion in Light Duty Gasoline and Diesel Engines: A Review

2018-04-03
2018-01-0051
Turboexpansion is a concept which is aimed at reducing the fuel consumption of pressure-charged combustion engines by providing over-cooled air to the engine prior to its induction in the combustion chamber. The performance of the engine is dependent on intake charge density which is preferred to be high at reduced charge air temperature. This becomes achievable through a cooling system known as a turbo expander which expands a high-pressure gas to produce work that is usually employed to drive a compressor. Though, initially used for the purpose of refrigeration in industries, for the past few decades various researches have proved its efficiency in internal combustion engines. In gasoline engines, it is usually employed to extend the knock limit and reduce carbon emissions. Also, an extension to the knock limit allows several improvements in parameters such as increased specific output, an increase in compression ratio and a reduction in the fuel consumption of the engine.
Technical Paper

An Experimental Analysis of Biodiesel Production from Mixture of Neem (Azadirachta indica) Oil and Sesame (Sesamum indicum L.) Oil and its Performance and Emission Testing on a Diesel Engine

2016-04-05
2016-01-1264
Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has higher FFA content than sesame oil. Biodiesel production from neem oil requires pretreatment neutralization procedure before alkali catalyzed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed and this mixture is Trans esterified with no pre-treatment process using molar ratio of 6:1.Fuel properties of methyl ester were close to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
Technical Paper

Assessment of the Performance and Emission Characteristics of 1-Octanol/Diesel Fuel Blends in a Water Cooled Compression Ignition Engine

2014-10-13
2014-01-2830
The interest of using alternative fuels in diesel engines has been accelerated exponentially due to a foreseen scarcity in world petroleum reserves, increase in the prices of the conventional fossil fuels and restrictions on exhaust emissions such as greenhouse gases from internal combustion (IC) engines initiated by environmental concerns. The constant trade-off between efficiency and emissions should be in proper balance with the conventional fuels in a fuel design process for future combustors. Unlike gasoline and diesel, alcohols act as oxygenated fuels. Adding alcohols to petroleum products allows the fuel to combust properly due to the presence of oxygen, which enhances premixed combustion phase, improves the diffusive combustion phase which increases the combustion efficiency and reduces air pollution. The higher activation energy of alcohols leads to better resistance to engine knocking that allows higher compression ratios and greater engine thermal efficiencies.
Technical Paper

Blending of Higher Alcohols with Vegetable Oil Based Fuels for Use in Compression Ignition Engine

2015-04-14
2015-01-0958
Concerns about long term availability of petroleum based fuels and stringent environmental norms have been a subject for deliberations around the globe. The vegetable oil based fuels and alcohols are very promising alternative fuels for substitution of diesel, reduce exhaust emissions and to improve combustion in diesel engines which is mainly possible due to oxygenated nature of these fuels. Jatropha oil is important non-edible oil in India which is either used in neat or modified form as diesel fuel. Furthermore n-butanol is renewable higher alcohol having properties quite similar to diesel fuel. In the present study, n-butanol was blended in Jatropha Oil (JO) and Jatropha Oil Methyl Ester (JME) on volumetric basis (10 and 20%). The blends were homogeneous and stable and there was no phase separation. The different physicochemical properties of blends were evaluated as per relevant standards.
Technical Paper

Comparative Assessment of Performance, Emission and Combustion Characteristics of Blends of Methyl and Ethyl Ester of Jatropha Oil and Diesel in Compression Ignition Engine

2013-10-14
2013-01-2664
India possesses only 0.3% of world petroleum reserves and hence heavily dependent upon petroleum derived fuels to feed its rapidly growing economy. Diesel Engines due to their superior performance have wide application in India, however, they also pollute environment significantly. Research is underway in India and elsewhere to explore the potential of variety of alternative fuels which could substitute diesel in a holistic manner. And in this context, non-edible vegetable oils are very promising as India has a large area of degraded land where such crops could be raised without compromising food security. Large number of studies have suggested that vegetable oils are not suitable in neat form as a fuel in diesel engine and should be trans-esterified using either methanol or ethanol to form esters to bring their properties similar to diesel fuel.
Technical Paper

Comparative Study of Performance and Emission Characteristics of Fish Oil and Calophyllum Inophyllum Oil Bio-Diesel in a Light Duty Diesel Engine

2014-10-13
2014-01-2773
The world today is facing the effect of the dependence on fossil fuels. Also, the rate of consumption of Fossil derived fuels is alarming. The use of non-conventional energy sources is to be increased so as to tackle the global climatic changes, environmental pollution and also to lower down the rate of depletion of fossil fuels. The urgent need to replace the petroleum products having harmful emissions has leaded us to the Biodiesel. Biodiesel is a well-known alternative for diesel with an advantage over the later because of its biodegradable, less toxic nature, superior lubricity, better emission characteristics and in a way environment friendly. The present study focuses on the comparative study and analysis of performance and emission characteristics of a light duty diesel engine on blends of Fish oil Biodiesel in Diesel and Calophyllum Inophyllum Oil Biodiesel in Diesel.
Technical Paper

Comparative Study on Performance and Emission Characteristics of Fish Oil Biodiesel and Mahua Oil Biodiesel Blend with Diesel and Diesel Fuel in a Medium Capacity Compression Ignition Employing Urea-SCR with Cu-ZSM5

2014-04-01
2014-01-1499
The present world scenario faces a serious threat from increasing dependence on fossil fuels. This has triggered the awareness to find alternative energy as their sustainable energy sources. Biodiesel as a cleaner renewable fuel may be considered as a good substitution for diesel fuel due to it being used in any compression ignition engine without any modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions. In terms of emissions from biodiesel, the cause of concern continues to be the NOx emissions. Therefore, to compliment the functioning of biodiesels, Urea-SCR over Cu-ZSM5 catalyst is an effective option due to its ability to convert NOx into nitrogen and water. There has been increasing concerns that biodiesel feedstock may compete with food supply in the long term. The recent paper focuses on use of two non-edible oils mahua oil and fish oil (processed from waste produced by fish).
Technical Paper

Comparative Study on Performance and Emission Characteristics of Fish Oil Biodiesel and Mahua Oil Biodiesel Blend with Diesel in a Compression Ignition Engine

2013-10-14
2013-01-2666
The commercial sources of energy such as fossil fuels and petroleum products are extensively used. These sources are finite and cause large scale degradation of environment. The increased pollution in urban areas is already causing serious sociological, ecological and economic implications. Diesel engines produce high torque at low rpm as compared to spark ignition engines due to which they are used in industrial, agricultural and transportation sector. Diesel fuel has higher HC, CO and PM emissions in comparison to biodiesel. This has drawn the attention of world towards the usage of biodiesel as an alternative fuel. Biodiesel has an advantage over diesel fuel because of its biodegradable and less toxic nature and superior lubrication properties. However, NOx emissions are compounded in case of biodiesel in CI engine. There has been concerns that biodiesel feedstock may compete with food supply in the long term.
Technical Paper

Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner

2016-04-05
2016-01-1015
Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Evaluation of Emission Characteristics of Blend of Algae Oil Methyl Ester with Diesel in a Medium Capacity Diesel Engine

2014-04-01
2014-01-1378
Primary energy sources can be divided into non-renewable and renewable. The over-exploration of non-renewable sources for energy availability imposes considerable impacts on the environment. Reducing the use of fossil fuels would significantly reduce the carbon dioxide emissions and other pollutants produced. The future drift for sustainable production of renewable energy is cautiously thoughtful for it has been increasingly understood that first generation biofuels, majorly produced from food crops that are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-edible feedstock such as microalgae, which potentially offers greatest opportunities in the longer term. Microalgae are considered a very promising feedstock for biodiesel production due to their very high yield and their no competition with food crops.
Technical Paper

Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel

2013-11-27
2013-01-2888
The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
Journal Article

Experimental Investigation of Diesel Engine Fueled with Jatropha Oil Blend with Ethanol

2013-09-08
2013-24-0105
Dwindling petroleum reserves and alarming level of air pollution has been an issue of great concern in recent times and researchers across the world are experimenting on variety of renewable fuels for meeting the future energy demands. Within the gamut of alternative fuels, biofuels are the most promising and have the potential to mitigate climate change and lease a new life to existing IC engines. The vegetable oils are having immense potential in this context and have been used either in neat or modified form by large number of researchers. Jatropha curcus is a perennial plant and bears non edible oil. The plant is drought tolerant and has been cultivated all over the arid and semi-arid areas for reforestation. In the present study, blends of jatropha oil and ethanol have been prepared in 5, 10, 15 and 20% (v/v) and evaluation of important properties of blends has been carried. The results show that properties are quite similar to diesel fuel.
Technical Paper

Experimental Investigation of Orange Peel Oil Methyl Ester on Single Cylinder Diesel Engine

2013-09-08
2013-24-0171
The rising cost and exponential depletion of crude oil in international market has provided an opportunity for the researchers to evaluate the utilization and suitability of various renewable fuels. Amongst variety of alternative fuels, biofuels have the potential to mitigate the vulnerability and the adverse effects of use of fossil fuels. Vegetable/plant oil is better proposition as alternative fuel for diesel engine having much advantage over other alternative fuels. Orange oil from its peel has a huge potential and can be used as an alternate fuel at the most economical purchase rate. In the present investigation experiments were carried out to evaluate performance and emission characteristics of Orange peel oil methyl ester blends (OPOME) (10%, and 20% by volume) on unmodified diesel engine. The properties of these blends were found to be comparable to diesel and confirming to both the American and European standards.
Technical Paper

Experimental Investigation on Use of Jatropha Oil Ethyl Easter and Diesel Blends in Small Capacity Diesel Engine

2013-09-08
2013-24-0172
Biodiesel in has gained great momentum in last few years and has been a subject of vast research all around the globe. Bulk of the research work carried out so far has been confined to production of methyl esters of vegetable oil that is known as biodiesel in the transesterification process. In the present study, jatropha oil ethyl ester (JOEE) was prepared using transesterification process with ethanol and KOH as a catalyst. The evaluation of important physico-chemical properties was carried and the properties were found within acceptable limits of ASTM/EN standards. A small capacity diesel engine was fuelled with different blends of JOEE and diesel and various performances, emission and combustion characteristics were evaluated. The results suggested that brake thermal efficiency was increased and emissions of carbon monoxide, hydrocarbons and smoke opacity were found lower for JOEE blend confirming better combustion due to the oxygenated fuel and higher cetane rating.
Technical Paper

Experimental Investigations of Metal Oxide Nano-Additives on Working Characteristics of CI Engine

2019-04-02
2019-01-0794
Biodiesel is a potential substitute for diesel and extensive research is carried in India on production and utilization of biodiesel from a variety of edible/non-edible, animal fat and waste oils. However, issues like stability, clogging, increased NOx, and high consumption rate etc. are some of the critical issues which are associated with long-term use of these alternative fuels in a diesel engine. The recent developments in science and technology may have concreted a method to create nano measure vigorous resources that have incredible benefits to micron sized constituents. Nano liquids may be a fresh period of compact-fluid complex constituents comprising of nano sized concrete elements disseminated into a base liquid. The present study investigates the effect of doping metal oxides nanoparticles with waste fish oil-based biodiesel. For the present study, the blends of fuel are prepared by using 30ppm each of titanium dioxide and alumina nanoparticles respectively.
Technical Paper

FUELLING A AGRICULTURE DIESEL ENGINE WITH DERIVATIVE OF PALM OIL

2004-01-16
2004-28-0039
As neat crude palm oil is not ideally suitable as a fuel for diesel engines because of its high viscosity; process of transesterification was adopted to develop methyl ester of palm oil that approximate the properties and performance of hydrocarbon-based diesel fuel. Various properties of the methyl ester of palm oil were evaluated and compared in relation with that of neat diesel. The prepared methyl ester of palm oil, blended in different concentrations with neat diesel was then subjected to performance and emission tests in order to evaluate its suitability in diesel engine. The data thus generated were compared with base line data generated from neat diesel. An optimal blend of 10-20% methyl ester of palm oil with neat diesel exhibited best performance and smooth engine operation without any symptoms of undesired combustion phenomenon. This suggests use of 10-20% of biodiesel developed from palm oil in diesel engine with out any difficulty.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Performance Evaluation and Emission Characteristics of Biodiesel-Alcohol-Diesel Blends Fuelled in VCR Engine

2016-10-17
2016-01-2265
The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
X