Refine Your Search

Topic

Search Results

Technical Paper

A Simplified Circuit Model for the Emulation of Glow Phase during Spark Discharge

2018-04-03
2018-01-0092
The ever-growing demand to meet the stringent exhaust emission regulations have driven the development of modern gasoline engines towards lean combustion strategies and downsizing to achieve the reduction of exhaust emission and fuel consumption. Currently, the inductive ignition system is still the dominant ignition system applied in Spark Ignited (SI) engines. It is popular due to its simple design, low cost and robust performance. The new development in spark ignition engines demands higher spark energy to be delivered by the inductive ignition system to overcome the unfavorable ignition conditions caused by the increased and diluted in-cylinder charge. To meet this challenge, better understanding of the inductive ignition system is required. The development of a first principle model for simulation can help in understanding the working mechanism of the system in a better way.
Technical Paper

A Study of Combustion Inefficiencies in SI Engines Powered by Alcohol and Ether Fuels Using Detailed Emission Speciation

2022-03-29
2022-01-0520
Advanced combustion engines, as power sources, dominate all aspects of the transportation sector. Stringent emission and fuel efficiency standards have promoted the research interest in advanced combustion strategies and alternative fuels. Owing to the comparable energy density to the existing fossil fuels and renewable production, alcohol and ether fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. Furthermore, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. However, lean-burn or EGR dilution can introduce combustion inefficiencies in the form of excessive hydrocarbon, carbonyl species and carbon monoxide emissions.
Technical Paper

A Thermal Analysis of Active-flow Control on Diesel Engine Aftertreatment

2004-10-25
2004-01-3020
One-dimensional transient modeling techniques are adapted to analyze the thermal behavior of lean-burn after-treatment systems when active flow control schemes are applied. The active control schemes include parallel alternating flow, partial restricting flow, and periodic flow reversal (FR) that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive flow converters. To diesel particulate filters (DPF), lean NOx traps (LNT), and oxidation converters (OC), the combined use of active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to more favorable windows for the filtration, conversion, and regeneration processes. Comparison analyses are made between active flow control and passive flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and converter properties.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

Boosted Current Spark Strategy for Lean Burn Spark Ignition Engines

2018-04-03
2018-01-1133
Spark ignition systems with the capability of providing spark event with either higher current level or longer discharge duration has been developed in recent years to help IC engines towards clean combustion with higher efficiency under lean/diluted intake charge. In this research, a boosted current spark strategy was proposed to investigate the effect of spark discharge current level and discharge duration on the combustion process. Firstly, the discharge characteristics of a boosted current spark system were tested with a traditional spark plug under crossflow conditions, and results showed that the spark channel was more stable, and was stretched much longer when the discharge current was boosted. Then the boosted current strategy was used in a spark ignition engine operating under lean conditions. Boosted current was added to the spark channel with different timing, duration, and current levels.
Technical Paper

Boundary Layer Enhanced Thermal Recuperation for Diesel Particulate Filter Regeneration under a Periodic Flow Reversal Operation

2005-04-11
2005-01-0951
Diesel Particulate Filters (DPF) are viable to reduce smoke from diesel engines. An oxidation process is usually required to remove the Particulate Matter (PM) loading from the DPF substrates. In cases when the engine exhaust temperature is insufficient to initiate a thermal regeneration, supplemental energy is commonly applied to raise the exhaust gas and/or the DPF substrate temperatures. A flow reversal (FR) mechanism that traps a high temperature region in the DPF substrate by periodically altering the gas flow directions has been identified to be capable of reducing the supplemental energy and thus to improve the overall thermal efficiency of the engine. However, extended operations with low exhaust temperature lowers the DPF boundary temperatures that defers the regeneration processes. Furthermore, the temperature fluctuations caused by the periodic FR operation also increase the thermal stress in the DPF.
Technical Paper

Characterization of an Integrated Three-Way Catalyst/Lean NOx Trap System for Lean Burn SI Engines

2023-10-31
2023-01-1658
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Technical Paper

Combustion Stability Improvement via Multiple Ignition Sites on a Production Engine

2020-04-14
2020-01-1115
For spark ignition (SI) engines, further improvement of engine efficiency has become the major development trend, and lean burn/EGR technologies, as well as intensified in-cylinder flow, need to be adapted to reach that target. Stronger ignition sources become more favorable under extreme lean/EGR conditions. Among the ignition technologies developed, multiple ignition sites technology has been proved to be an effective way to help with the initial flame kernel development. In this paper, a spark ignited 4-cylinder turbo-charged production engine is employed to investigate the impact of multiple ignition sites technology on engine performance under lean burn conditions. Four in-house designed 3-core sparkplugs are installed on the cylinders to replace traditional stock sparkplugs, in order to generate multiple ignition sites in the cylinders.
Technical Paper

Development of a Compact Reverse-Flow Catalytic Converter for Diesel Dual Fuel LEV

1999-10-25
1999-01-3558
Upon an innovative compact design, extraordinary heat retention capability is demonstrated with a reverse-flow catalytic converter (RFC). By periodical flow reversal, the monolith solid to gas-flow thermal energy recovery, which generates a superior temperature profile oscillating along the monolith flow-path, escalates the temperature-rise by the exothermic reaction of THC and CO. Thus, the averaged temperature level of the catalytic monolith is raised substantially independent of the inflow gas temperature from engine exhaust, while an ordinary flow-through catalyst would lose light off following similar operations with low exhaust temperatures. Along the exhaust flow-path of a typical diesel-dual fuel RFC operation, the monolith center temperature is highly elevated from the boundary temperatures, while the boundary temperatures are approximating the inflow exhaust temperature.
Technical Paper

Discharge Current Management for Diluted Combustion under Forced Flow Conditions

2020-04-14
2020-01-1118
Lean burn or EGR diluted combustion with enhanced charge motion is effective in improving the efficiency of spark ignition engines. However, the ignition process under these conditions is getting more challenging due to higher ignition energy required by the lean or diluted mixture, as well as the interactions of the gas flow on the flame kernel. Enhanced spark discharge energy is essential to initiate the combustion under these conditions. Moreover, the discharge process should be more carefully controlled to improve the effectiveness of the spark. In this study, spark ignition systems with boosted discharge energy are used to ignite diluted air-fuel mixture under forced flow conditions. The impacts of the discharge current level, the discharge duration and the discharge current profile on the ignition are investigated in detail using optical diagnosis.
Technical Paper

Effect of Spark Assisted Compression Ignition on the End-Gas Autoignition with DME-air Mixtures in a Rapid Compression Machine

2024-04-09
2024-01-2822
Substantial effort has been devoted to utilizing homogeneous charge compression ignition (HCCI) to improve thermal efficiency and reduce emission pollutants in internal combustion engines. However, the uncertainty of ignition timing and limited operational range restrict further adoption for the industry. Using the spark-assisted compression ignition (SACI) technique has the advantage of using a spark event to control the combustion process. This study employs a rapid compression machine to characterize the ignition and combustion process of Dimethyl ether (DME) under engine-like background temperature and pressures and combustion regimes, including HCCI, SACI, and knocking onsite. The spark ignition timing was swept to ignite the mixture under various thermodynamic conditions. This investigation demonstrates the presence of four distinct combustion regimes, including detonation, strong end-gas autoignition, mild end-gas autoignition, and HCCI.
Technical Paper

Effect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine

2021-04-06
2021-01-0478
Meeting the increasingly stringent emission and fuel efficiency standards is the primary objective of the modern automotive research. Lean/diluted combustion is a promising avenue to realize high-efficiency combustion and reduce emissions in SI engines. Under diluted conditions, the flame propagation speed is reduced because of the reduced charge reactivity. Enhancing in-cylinder charge motion and turbulence, and thereby increasing the flame speed, is a possible way to harness the combustion process in SI engines. However, charge motion can have a significant effect on the spark ignition process because of the reduced discharge duration and frequent restrikes. A longer discharge duration can aid in the formation of a self-sustained flame kernel and subsequent stable ignition. Therefore, an empirical study is undertaken to investigate the effect of discharge duration and ignition timing on the ignition and early combustion in a port fueled SI engine, operated under lean conditions.
Technical Paper

Effective Ignition of Lean Methane/Hydrogen Mixture in a Rapid Compression Machine

2023-04-11
2023-01-0255
The use of renewable natural gas and green hydrogen can significantly reduce the carbon footprint of engines. For future spark ignition engines, lean burn strategy and high compression ratio need to be adopted to further improve thermal efficiency, reducing energy consumption. The efficacy of the ignition system is essential to initiate self-sustainable flame under those extreme conditions. In this work, a rapid compression machine is employed to compress air-fuel mixture to engine-like boundary conditions before the spark event to experimentally investigate the ignition and combustion characteristics of the methane-air mixtures under extreme lean conditions. Hydrogen is also added to support the ignition process and enhance flame propagation speed. Lean methane-air mixtures with excess air ratio up to 2.8 are used, with 10 vol% hydrogen addition into the methane fuel. The ignition criteria under various ignition strategies are explored.
Journal Article

Electrical Waveform Measurement of Spark Energy and its Effect on Lean Burn SI Engine Combustion

2019-12-19
2019-01-2159
The conventional transistor coil ignition system with coil-out energy up to 100 mJ might not be sufficient to establish a self-sustained flame kernel under lean combustion with strong in-cylinder flow motion. Further increase of the discharge current will decrease the voltage across the spark gap, which will affect the calculation of the energy delivered to the spark gap. In this paper, the relationship between the discharge current and gap voltage is investigated, and it is discovered that the spark energy doesn,t increase monotonously with the increase of the discharge current. However, engine test results still indicate a positive impact of discharge current amplitude on the engine performance.
Technical Paper

Emission Analysis of HCCI Combustion in a Diesel Engine Fueled by Butanol

2016-04-05
2016-01-0749
Advances in engine technology in recent years have led to significant reductions in the emission of pollutants and gains in efficiency. As a facet of investigations into clean, efficient combustion, the homogenous charge compression ignition (HCCI) mode of combustion can improve upon the thermal efficiency and nitrogen oxides emission of conventional spark ignition engines. With respect to conventional diesel engines, the low nitrogen oxides and particulate matter emissions reduce the requirements on the aftertreatment system to meet emission regulations. In this paper, n-butanol, an alcohol fuel with the potential to be derived from renewable sources, was used in a light-duty diesel research engine in the HCCI mode of combustion. Control of the combustion was implemented using the intake pressure and external exhaust gas recirculation. The moderate reactivity of butanol required the assistance of increased intake pressure for ignition at the lower engine load range.
Technical Paper

Empirical and Theoretical Investigations of Active-flow Control on Diesel Engine After-treatment

2006-04-03
2006-01-0465
Empirical and theoretical studies are made between active-flow control and passive-flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The exhaust active-flow control includes the parallel alternating flow, partial restricting flow, periodic flow reversal, and extended flow stagnation that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive-flow converters [1, 2]. The tests are set up on a single cylinder Yanmar engine. Theoretical studies are performed with the one-dimensional transient modeling techniques to analyze the thermal behavior of the diesel after-treatment systems when active flow control schemes are applied.
Technical Paper

Energy Efficiency Analysis between In-cylinder and External Supplemental Fuel Strategies

2007-04-16
2007-01-1125
Preliminary empirical and modeling analyses are conducted to evaluate the energy efficiency of in-cylinder and external fuel injection strategies and their impact on the energy required to enable diesel particulate filter (DPF) regeneration for instance. During the tests, a thermal wave that is generated from the engine propagates along the exhaust pipe to the DPF substrate. The thermal response of the exhaust system is recorded with the thermocouple arrays embedded in the exhaust system. To implement the external fuel injection, an array of thermocouples and pressure sensors in the DPF provide the necessary feedback to the control system. The external fuel injection is dynamically adjusted based on the thermal response of the DPF substrate to improve the thermal management and to reduce the supplemental energy. This research intends to quantify the effectiveness of the supplemental energy utilization on aftertreatment enabling.
Technical Paper

Energy Efficiency Analysis of Active-flow Operations in Diesel Engine Aftertreatment

2006-10-16
2006-01-3286
Experiments are carried out with the diesel particulate filter and oxidation catalyst embedded in the active-flow configurations on a single cylinder diesel engine. The combined use of various active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to favorable windows for filtration, conversion, and regeneration processes. Empirical and theoretical investigations are performed with a transient one-dimensional single channel aftertreatment model developed in FORTRAN and MATLAB. The influence of the supplemental energy distribution along the length of aftertreatment device is evaluated. The theoretical analysis indicates that the active-flow control schemes have fundamental advantages in optimizing the converter thermal management including reduction in supplemental heating, increase in thermal recuperation, and improving overheating protection.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
X