Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 23234
Technical Paper

"Nickel electroformed" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0272
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. While rapid prototyping techniques are employed to make prototype tools, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP and RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured by combining Stereolithography (SL), RP technique, with nickel electroforming process. The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called Accurate Clear Epoxy Solid (ACES).
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

(Paint) Film Finishing in Practice

1992-02-01
920732
(Paint) film as an alternative to spray applied paint has received growing attention in recent years. The potential for economic and environmental advantage and quality enhancement with this technology has been reported in several technical papers (Ref. 1, 3 and 4). The actual practice of film finishing, however, has received only limited notice. Film finishes have been applied to aluminum, stainless steel, PVC, and ABS. Starting in 1982, part applications include: wheel covers, door edge guards, window surrounds, roof drip moldings, lower windshield moldings, rocker panels, body side moldings, B pillars, and A pillars. Industry awareness and acceptance of film finishing as a viable alternative to spray applied paint is increasing. The two technologies are similar in many ways, yet distinctly different in other ways. They share a common goal: To yield a durable finish, economically and with superior visual impact. This paper reviews the unique aspects of film finishing.
Technical Paper

1.2GPa Advanced High Strength Steel with High Formability

2014-04-01
2014-01-0991
To reduce the Body in White (BIW) mass, it is necessary to expand the application of Advanced High-Strength Steels (AHSS) to complex shaped parts. In order to apply AHSS to complex shaped parts with thinner gauge, high formability steel is required. However, higher strength steels tend to display lower elongations, compared with low/medium strength steels. Current AHSS are applied to limited parts for this reason. The new 1.2GPa material, with high formability, was developed to solve this issue. The mechanical property targets for the high elongation 1.2GPa material were achieved by precise metallurgical optimization. Many material aspects were studied, such as formability, weldabilty, impact strength, and delayed fracture. As the result of this development, 1.2GPa AHSS has been applied to a new vehicle launched in 2013.The application of this material was the 1st in the world, and achieved a 11kg mass reduction.
Technical Paper

1500 Hp Diesel Electric Tractor

1976-02-01
760647
The experience accumulated with a prototype 1000 HP diesel electric tractor since 1969 is described. The new 1500 HP V220 diesel electric tractors are described along with some of the initial operation of these two units. Experience with the initial 1000 HP unit and the two 1500 HP tractors confirm the necessity of additional testing and experimentation to refine the design to get greater productivity with reduced operator fatigue. The unpredictability of the load and operating surface are major problems that present a real challenge to the engineer.
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1984 Continental Mark VII/Lincoln Continental Electronically-Controlled Air Suspension (EAS) System

1984-02-01
840342
This paper describes the Electronic Air Suspension (EAS) System developed by Ford Motor Company. Design trade-offs between load-carrying capacity necessary with conventional steel spring suspension systems and riding comfort are avoided when today's microcomputer technology is combined with a leveling air spring suspension. An electric air compressor with regenerative air dryer, three electronic “Hall Effect” height sensors, four air springs with integral solenoids, and a control module with a single chip microcomputer are the key EAS System components discussed.
Technical Paper

1988 Chevrolet/GMC Full-Size Pickup Truck Aerodynamics

1987-11-01
872274
This paper is a summary of the aerodynamic development of the 1988 Chevrolet and GMC pickup truck. Comprehensive drag reduction work was performed with clay models from the original concept through the detailed full-scale model. In addition, the aerodynamic development included wind rush noise reduction, optimization of engine cooling air flow, and body surface pressures for HVAC performance.
Technical Paper

1K and 2K Polyurethanes for Automotive Topcoats

1993-03-01
930049
The increased occurrence of environmental damage to automotive topcoats and the variety of abrasive conditions to which the coating is subjected have made increasing demands on the properties of these coatings. There is as yet, no single paint chemistry that fulfills these extreme requirements in all respects. On the other hand, the right choice of components in polyurethane can result in excellent etch resistance as well as improved scratch resistance compared to traditional melamine/acrylic systems. This paper will discuss some recent studies in the areas of two-component and one-component polyurethane chemistry, which address these rigorous quality requirements.
Technical Paper

2-D Springback Analysis for Stretch-Bending Processes Based on Total Strain Theory

1995-02-01
950691
A theoretical model is presented for predicting springback of wide sheet metal subjected to 2D-stretch-bending operation. The material is assumed to be normal anisotropic with n-th power hardening law, σ = Fεn. Two types of stretch-bending experiment, bending with simultaneous stretching and stretch-bending followed by consecutive re-stretching, is conducted using AK sheet steel and sheet aluminum alloy A5182-O. The measured values of springback are in good agreement with analytical ones for a wide range of bending radii, stretching forces, and loading conditions. Furthermore, a calculation method for predicting springback configurations of 2D sheet metal parts with arbitrary cross-sections which include both stretch-bending and stretch-bending-unbending deformation is proposed.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2004 Nissan 3.5L Cam Cover Material Study: Aluminum, Magnesium and Composite

2005-04-11
2005-01-0727
The present study compares the NVH performance of three different materials used on cam covers in automobiles, Aluminum (Al), Magnesium (Mg) and Thermoplastic (TP). The cam cover design used for this comparison was the 2004 Nissan Maxima 3.5L production cam cover which is made of a thermoplastic (TP). The Al and Mg covers for this study were created by sandcast, due to time constraints, via laser scanning techniques using the 2004 Nissan Maxima 3.5L production thermoplastic cover design. Note that sand-cast covers generally provide a less quiet sound field than the standard casting method. The Nissan production cover comes with a production baffle made of a similar material as the cover. Testing was conducted with and without the production baffle for all covers. The study was conducted for the production boundary condition of a non-isolated cover and a Freudenberg-NOK (FNGP) partially isolated cover. Isolated bolt assemblies using elastomeric grommets were used to isolate the cover.
Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Technical Paper

2005 Ford GT Magnesium I/P Structure

2004-03-08
2004-01-1261
This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe

2005-04-11
2005-01-0465
This paper describes the engineering, manufacturing and integration necessary to produce the Corvette's first ever all-aluminum spaceframe (see Figure 1). The engineering and manufacturing of the spaceframe was a joint venture between General Motors and suppliers ALCOA (Aluminum Company of America) and Dana Corporation. ALCOA led the initial design of the spaceframe; Dana Corp led the manufacturing; General Motors' Engineering and Manufacturing groups led the integration of the assembly. The aluminum spaceframe design is modeled after the baseline steel structure of the Corvette coupe. The aluminum spaceframe reduces 140 lbs from the steel baseline and enters the plant at 285 lbs. This frame allows the 2006 Corvette Z06 to enter the market at a 3100 lbs curb weight. Aluminum casting, extruding, stamping, hydroforming, laser welding, Metal Inert Gas (MIG) welding, Self Pierce Riveting (SPR), and full spaceframe machining make up the main technologies used to produce this spaceframe.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

21st Century Aircraft Potable Water Systems

1999-10-19
1999-01-5556
Aircraft potable (drinking) water systems haven’t changed significantly in the last half-century. These systems consist of cylindrical water tanks pressurized by bleed air from the jet engines, with insulated stainless steel distribution lines. What has changed recently is the increase in the possibility of aircraft picking up contaminated drinking water at foreign and domestic stops. Customer awareness of these problems has also changed - to the point where having reliable drinking water is now a competitive issue among airlines. Old style potable water systems that are used on modern aircraft are high maintenance and exacerbate the growth of microbes because the water is static much of the time. The integrity of some pressurized water tanks are also a concern after years of use. Cost-effective mechanical and biological solutions exist that can significantly reduce the amount of chemicals added and provide good potable water.
X