Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Combined Physical / Neural Approach for Real-Time Models of Losses in Combustion Engines

2007-04-16
2007-01-1345
Reliable estimation of pumping and friction losses in modern combustion engines allows better control strategies aiming at optimal fuel consumption and emissions. Sophisticated simulation tools enable detailed simulation of losses based as well on physical and thermodynamic laws as well as on design data. Models embedded in these tools however are not real-time capable and cannot be implemented into the programs of the electronic control units (ECU's). In this paper an approach is presented that estimates the pumping and friction losses of a combustion engine with variable valve train (VVT). Particularly the pumping losses strongly depend on the control of variable valve train by ECU. The model is based on a combination of a globally physical structure embedding data driven sub models based on test bed measurements. Losses are separated concerning different component groups (bearings, pistons, etc.).
Technical Paper

A Consistent Flamelet Model to Describe the Interaction of Combustion Chemistry and Mixing in the Controlled Auto Ignition Regime

2010-04-12
2010-01-0181
In internal combustion engines operating in Controlled Auto Ignition (CAI) mode, combustion phasing and heat-release rate is controlled by stratification of fuel, fresh air, and hot internally recirculated exhaust gases. Based on the Representative Interactive Flamelet (RIF) model, a two-dimensional flamelet approach is developed. As independent parameters, firstly the fuel mixture fraction and secondly the mixture fraction of internally recirculated exhaust gases are considered. The flamelet equations are derived from the transport equations for species mass fraction and total enthalpy, employing an asymptotic analysis. A subsequent coordinate transformation leads to the phase space formulation of the two-dimensional flamelet equations. By the use of detailed chemical reaction mechanisms, the effects of dilution, temperature, and chemical species composition due to the internally recirculated exhaust gases are represented.
Technical Paper

A New Approach to the Thermal Analysis of Electrical Distribution Systems

2011-04-12
2011-01-1437
The optimum design of an electrical distribution system (EDS) is based on the profound understanding and measurement of its thermal behavior, because this determines wire diameter and insulation material, has a major impact on the fusing strategy, and enables minimizing technical risk. Current methods of calculation require an extensive database, whereas the temperature measurements at selected points with normal sensors allow neither the precise rating of the actual insulation temperature within a wire bundle, nor the determination of the thermal impact of load currents. The presented approach is based on both a new measurement method and on a related evaluation algorithm. A common automotive wire is applied as a sensing device using its resistance temperature coefficient as the measurement principle.
Technical Paper

A Reduced Kinetic Reaction Mechanism for the Autoignition of Dimethyl Ether

2010-10-25
2010-01-2108
A reduced kinetic reaction mechanism for the autoignition of dimethyl ether is presented in this paper. Dimethyl ether has proven to be one of the most attractive alternatives to traditional fossil fuels for compression ignition engines. It can either be produced from biomass or from fossil oil. For dimethyl ether, Fischer et al. (Int. J.Chem. Kinet. 32 ( 12 ) (2000) 713-740) proposed a detailed reaction mechanism consisting of 79 species and 351 elementary reactions. In the present work, this detailed mechanism is systematically reduced to 31 species and 49 reactions. The reduced mechanism is discussed in detail with special emphasis on the high temperature thermal decomposition of dimethyl ether and on the fuel specific depleting reactions, which produce the methoxymethyl radical. In addition, a reaction pathway analysis for low temperature combustion is applied, where hydroperoxy-methylformate is found to be the dominating parameter for the low temperature regime.
Technical Paper

Combined Simulations and OH-Chemiluminescence Measurements of the Combustion Process using Different Fuels under Diesel-Engine like Conditions

2007-01-23
2007-01-0020
The influence of different fuels and injection pressures on the flame lift-off length (LOL), as well as the combustion structure under quiescent conditions in a heated high-pressure vessel were experimentally investigated using OH chemiluminescence measurements. This data was used to validate the newly developed G-equation coupled with MRIF (G-MRIF) model, which was designed to describe the lifted Diesel combustion process. The achieved results are very promising and could be used as a tool to apply this combustion mode into Diesel engines. Furthermore these measurements were used to validate the approach of a new combustion model, which was developed using former OH chemiluminescence measurements by the authors. Based on this approach the LOL is mainly determined by auto-ignition and therefore highly dependent on the cetane number. This model is presented in more detail within this work.
Technical Paper

HiL-based ECU-Calibration of SI Engine with Advanced Camshaft Variability

2006-04-03
2006-01-0613
A main focus of development in modern SI engine technology is variable valve timing, which implies a high potential of improvement regarding fuel consumption and emissions. Variable opening, period and lift of inlet and outlet valves enable numerous possibilities to alter gas exchange and combustion. However, this additional variability generates special demands on the calibration process of specific engine control devices, particularly under cold start and warm-up conditions. This paper presents procedures, based on Hardware-in-the-Loop (HiL) simulation, to support the classical calibration task efficiently. An existing approach is extended, such that a virtual combustion engine is available including additional valve timing variability. Engine models based purely on physical first principles are often not capable of real time execution. However, the definition of initial parameters for the ECU requires a model with both real time capability and sufficient accuracy.
Technical Paper

Laminar Burning Velocities of Nitrogen Diluted Standard Gasoline-Air Mixture

2008-04-14
2008-01-1075
To understand how laminar burning velocities of standard unleaded gasoline-air-mixtures change by varying the concentration of oxygen in the combustible mixture, experimentally and numerical investigations are conducted in this work. Experiments were performed using a heatable pressure vessel which enables optical access. A monochromatic high-speed Schlieren cinematography measurement system combined with a high-speed CCD camera were used to track the propagating spherical flame fronts in the vessel. Numerically, freely propagating one dimensional laminar steady flame calculations were conducted for Primary-Reference-Fuel Air Mixtures (PRF87 or RON87), corresponding for standard gasoline combustible mixtures. Two combustible mixtures were investigated: (1) with air as oxidizer; (2) oxidizer consisting of 15% O2 and 85% N2 by mole fractions. The initial temperature for all investigated mixtures was 373 K.
Technical Paper

Measurements of Laminar Flame Velocity and Markstein Length for Standard Gasoline and a Corresponding Reference Fuel Mixture (PRF87)

2007-07-23
2007-01-2006
An experimental and numerical investigation of commercial Gasoline (octane number = 90) with a reference fuel (PRF87) were accomplished. Laminar Flame Velocities and Markstein Numbers of these fuel air mixtures were investigated and compared with each other and with numerical results. PRF87 is presented as a reference fuel for Gasoline defined as 87 percent Iso-Octane and 13 percent N-Heptane by volume at ambient conditions. Spherical flames of Gasoline- and PRF87-Air-Mixtures at initial temperature of 373 K, initial pressure range from 10 bar to 25 bar and equivalence ratios from ϕ = 0.7 to ϕ = 1.2 were experimentally investigated using the Constant Volume Bomb Method.
Technical Paper

Modeling of HCCI Combustion Using Adaptive Chemical Kinetics

2002-03-04
2002-01-0426
In this paper an online method for automatically reducing complex chemical mechanisms for simulations of combustion phenomena has been developed. The method is based on the Quasi Steady State Assumption (QSSA). In contrast to previous reduction schemes where chemical species are selected only when they are in steady state throughout the whole process, the present method allows for species to be selected at each operating point separately generating an adaptive chemical kinetics. The method is used for calculations of a natural gas fueled engine operating under Homogenous Charge Compression Ignition (HCCI) conditions. We discuss criteria for selecting steady state species and the influence of these criteria on the results such as concentration profiles and temperature.
Technical Paper

Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine

2013-10-14
2013-01-2539
If fuels that are more resistant to auto-ignition are injected near TDC in compression ignition engines, they ignite much later than diesel fuel and combustion occurs when the fuel and air have had more chance to mix. This helps to reduce NOX and smoke emissions at much lower injection pressures compared to a diesel fuel. However, PPCI (Partially Premixed Compression Ignition) operation also leads to higher CO and HC at low loads and higher heat release rates at high loads. These problems can be significantly alleviated by managing the mixing through injector design (e.g. nozzle size and centreline spray angle) and changing CR (Compression Ratio). This work describes results of running a single-cylinder diesel engine on fuel blends by using three different nozzle design (nozzle size: 0.13 mm and 0.17 mm, centreline spray angle: 153° and 120°) and two different CRs (15.9:1 and 18:1).
Technical Paper

Simulating the Combustion in a DI Diesel Engine Applying a New Model for the Conditional Scalar Dissipation Rate

2001-03-05
2001-01-1001
The Representative Interactive Flamelet (RIF)-model offers a method of separating the numerical effort associated with solving the governing equations for the turbulent flow field from that of the chemistry. This is possible since the chemical time scales can be considered very small compared to those related to the turbulence. The concept has gained widespread recognition owing to its ability of capturing the essential physics underlying combustion. The objective of this paper is to show how a more accurate description of mainly the soot formation and oxidation processes in a high-speed small-bore Direct Injection (DI) diesel engine can be realized within the framework of the RIF-model. This is achieved by deriving a new model for the conditional scalar dissipation rate, describing the transport in the flamelet.
Journal Article

Super-Knock Prediction Using a Refined Theory of Turbulence

2013-04-08
2013-01-1109
The occurrence of severe events of ‘super-knock’ originating from random pre-ignition kernels which sometimes is observed in turbo-charged spark-ignition engines was recently attributed by Kalghatgi and Bradley [4] to developing detonations which originate from a resonance between acoustic waves emitted by an auto-igniting ‘hot spot’ and a reaction wave which propagates along negative temperature gradients in the fuel-air mixture. Their occurrence depends on the steepness of the local instantaneous temperature gradient and on the length of the region of negative gradient. The theory requires that the temperature gradient extends smoothly over a sufficient length in the turbulent flow field. Then localized detonations may develop which are able to autoignite the entire charge within less than a millisecond and thus cause pre-ignition and ‘super-knock’.
Technical Paper

The Influence of Fuel Boiling Temperature on Common Rail Spray Penetration and Mixture Formation for Ethanol and Propylene-Glycol

2008-04-14
2008-01-0934
An intricate experimental investigation of Common-Rail-Sprays were done using a High Pressure Chamber, a Common-Rail-Injection-System as well as three optical measurement techniques. Ethanol and Propylene-Glycol (of purity for spectroscopic applications >99.9%) were used as fuels. The experimental boundary conditions of the high pressure chamber were up to 5 MPa and 800K. In detail an optical shadowgraph imaging and Mie-scattering technique were used. Liquid and gas phase spray penetration are investigated for fuels with low and high volatility respectively boiling temperature (propylene glycol, ethanol) for a variation of ambient gas phase temperature and density. Spatial information of the mixing process of both fuels is obtained by the 1D spontaneous Raman scattering (1D-RS) technique.
X