Refine Your Search

Topic

Search Results

Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
Technical Paper

An On-Board Distillation System to Reduce Cold-Start Hydrocarbon Emissions

2003-10-27
2003-01-3239
An On-Board Distillation System (OBDS) was developed to extract, from gasoline, a highly volatile crank fuel that allows the reduction of startup fuel enrichment and significant spark retard during cold starts and warm-up. This OBDS was installed on a 2001 Lincoln Navigator to explore the emissions reductions possible on a large vehicle with a large-displacement engine. The fuel and spark calibration of the PCM were modified to exploit the benefits of the OBDS startup fuel. Three series of tests were performed: (1) measurement of the OBDS fuel composition and distillation curve per ASTM D86, (2) measurement of real-time cold start (20 °C) tailpipe hydrocarbon emissions for the first 20 seconds of engine operation, and (3) FTP drive cycles at 20 °C with engine-out and tailpipe emissions of gas-phase species measured each second. Baseline tests were performed using stock PCM calibrations and certification gasoline.
Technical Paper

Coastdown Coefficient Analysis of Heavy-Duty Vehicles and Application to the Examination of the Effects of Grade and Other Parameters on Fuel Consumption

2012-09-24
2012-01-2051
To perform coastdown tests on heavy-duty trucks, both long acceleration and coasting distances are required. It is very difficult to find long flat stretches of road to conduct these tests; for a Class 8 truck loaded to 80,000 lb, about 7 miles of road is needed to complete the coastdown tests. In the present study, a method for obtaining coastdown coefficients from data taken on a road of variable grade is presented. To this end, a computer code was written to provide a fast solution for the coastdown coefficients. Class 7 and Class 8 trucks were tested with three different weight configurations: empty, “cubed-out” (fully loaded but with a payload of moderate density), and “weighed-out” (loaded to the maximum permissible weight).
Technical Paper

Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model

1996-02-01
960072
In premixed turbulent combustion models, two mechanisms have been used to explain the increase in the flame speed due to the turbulence. The newer explanation considers the full range of turbulence scales which wrinkle the flame front so as to increase the flame front area and, thus, the flame propagation speed. The fractal combustion model is an example of this concept. The older mechanism assumes that turbulence enables the penetration of unburned mixtures across the flame front via entrainment into the burned mixture zone. The entrainment combustion or eddy burning model is an example of this mechanism. The results of experimental studies of combustion regimes and the flame structures in SI engines has confirmed that most combustion takes place at the wrinkled flame front with additional combustion taking place in the form of flame fingers or peninsulas.
Technical Paper

Condensation of Fuel on Combustion Chamber Surfaces as a Mechanism for Increased HC Emissions from SI Engines During Cold Start

1997-10-01
972884
Condensation of fuel vapor on the cold surfaces within the combustion chamber is investigated as a possible mechanism for increased HC emissions from SI engines during cold start. A one-dimensional, transient, mass diffusion analysis is used to examine the condensation of single-species fuels on the surfaces of the combustion chamber as the pressure within the cylinder rises during compression and combustion, and re-vaporization during expansion, blowdown, and exhaust. The effects of wall temperature, fuel volatility, and engine load and speed on this mechanism are also discussed. This analysis shows that low-volatility fuel components can condense on the surfaces of the combustion chamber when the surface temperatures are sufficiently low. This condensed fuel may re-vaporize during the power and exhaust strokes, or it may remain in the combustion chamber until surface temperatures rise, perhaps tens of seconds later.
Technical Paper

Conversion of a 1999 Silverado to Dedicated E85 with Emphasis on Cold Start and Cold Driveability

2000-03-06
2000-01-0590
The University of Texas Ethanol Vehicle Challenge team focused upon cold start/driveability, fuel economy, and emissions reduction for our 1999 Ethanol Vehicle Challenge entry. We replaced or coated all fuel system components that were not ethanol compatible. We used the stock PCM for all control functions except control of a novel cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, increased EGR for the operating conditions of the five longest cruises on the FTP, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. This EGR control scheme should also benefit urban fuel economy. Additionally, we eliminated EGR at high load to improve power density.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
Technical Paper

Development of the Texas Drayage Truck Cycle and Its Use to Determine the Effects of Low Rolling Resistance Tires on the NOX Emissions and Fuel Economy

2009-04-20
2009-01-0943
Trucks operating in inter-modal (drayage) operation in and around port and rail terminals, are responsible for a large proportion of the emissions of NOX, which are problematic for the air quality of the Houston and Dallas/Ft. Worth metro areas. A standard test cycle, called the Texas Dray Truck Cycle, was developed to represent the operation of heavy-duty diesel trucks in dray operations. The test cycle reflects the substantial time spent at idle (~45%) and the high intensity of the on-road portions. This test cycle was then used in the SAE J1321 test protocol to evaluate the effect on fuel consumption and NOX emissions of retrofitting dray trucks with light-weight, low-rolling resistance wide-single tires. In on-track testing, a reduction in fuel consumption of 8.7% was seen, and NOX emissions were reduced by 3.8% with the wide single tires compared to the conventional tires.
Technical Paper

Diluents and Lean Mixture Combustion Modeling for SI Engines with a Quasi-Dimensional Model

1995-10-01
952382
Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents (internal and external EGR) have already played a key role in the reductions of emissions and fuel consumption. Lean burn modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM (stands for General Engine SIMulation) was used as the platform. A new strain rate model was developed with the Lewis number effect included.
Technical Paper

Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle

2003-10-27
2003-01-3202
In order to determine the factors that affect fuel economy quantitatively, the power flows through the major powertrain components were measured during operation over transient cycles. The fuel consumption rate and torque and speed of the engine output and axle shafts were measured to assess the power flows in a vehicle with a CVT. The measured power flows were converted to energy loss for each component to get the efficiency. Tests were done at Phase 1 and Phase 3 of the FTP and for two different CVT shift modes. The measured energy distributions were compared with those from the ADVISOR simulation and to results from the PNGV study. For both the Hot 505 and the Cold 505, and for both shift modes, the major powertrain loss occurs in the engine, including or excluding standby losses. However, the efficiency of the drivetrain/transmission is important because it influences the efficiency of the engine.
Technical Paper

Effects of Load on Emissions and NOx Trap/Catalyst Efficiency for a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1528
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Regeneration of the lean NOx trap/catalyst was also examined, as was the efficiency of NOx reduction. NOx stored in the trap/catalyst is released at the leading edge of regenerations, such that the tailpipe NOx is higher than the engine-out NOx for a brief period. The efficiency of NOx reduction was <50% for the lowest loads examined. As the load increased, the efficiency of NOx reduction decreased to near 0% due to excessive catalyst temperatures. Loads sufficiently high to require a rich mixture produce high NOx reduction efficiencies, but in this case the NOx reduction occurs via the three-way catalysts on this vehicle.
Technical Paper

Effects of Swirl and Tumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine

2000-03-06
2000-01-0533
The effect of the in-cylinder bulk flow on fuel distributions in the cylinder of a motored direct-injection S.I. engine was measured. Five different bulk flows were induced through combinations of shrouded and unshrouded valves, and port deactivation: stock, high tumble, reverse tumble, swirl, and swirl/tumble. Planar Mie scattering was used to observe the fuel spray movement in the centerline plane of a transparent cylinder engine. A fiber optic instrumented spark plug was used to measure the resulting cycle-resolved equivalence ratio in the vicinity of the spark plug. The four-valve engine had the injector located on the cylinder axis; the fiber optic probe was located between the intake valves. Injection timings of 90, 180, and 270 degrees after TDC were examined. Measurements were made at 750 and 1500 rpm with certification gasoline at open throttle conditions. From the images it was found that the type and strength of the bulk flow greatly affected the spray behavior.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

Fuel Spray Dynamics and Fuel Vapor Concentration Near the Spark Plug in a Direct-Injected 4-Valve SI Engine

1999-03-01
1999-01-0497
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The engine had a transparent cylinder liner that allowed the fuel spray to be imaged using laser sheet Mie scattering. A fiber optic probe was used to measure the vapor phase fuel concentration history at the spark plug location between the two intake valves. The fuel injector was located on the cylinder axis. Two flow fields were examined; the stock configuration (tumble index 1.4) and a high tumble (tumble index 3.4) case created using shrouded intake valves. The fuel spray was visualized with the engine motored at 750 and 1500 RPM. Start of injection timings of 90°, 180° and 270° after TDC of intake were examined. The imaging showed that the fuel jet is greatly distorted for the high tumble condition, particularly at higher engine speeds. The tumble was large enough to cause significant cylinder wall wetting under the exhaust valves for some conditions.
Technical Paper

Fuel-Spray/Charge-Motion Interaction within the Cylinder of a Direct-Injected, 4-Valve, SI Engine

1998-02-23
980155
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The interaction between the high-pressure fuel jet and the intake air-flow was observed. Laser-sheet droplet imaging was used to visualize the in-cylinder droplet distributions, and a single-component LDV system was used to measure in-cylinder velocities. The fuel spray was visualized with the engine motored at 1500 and 750 rpm, and with the engine stopped. It was observed that the shape of the fuel spray was distorted by the in-cylinder air motion generated by the intake air flow, and that this effect became more pronounced with increasing engine speed. Velocity measurements were made at five locations on the symmetry plane of the cylinder, with the engine motored at 750 rpm. Comparison of these measurements with, and without, injection revealed that the in-cylinder charge motion was significantly altered by the injection event.
Technical Paper

Further Development of an On-Board Distillation System for Generating a Highly Volatile Cold-Start Fuel

2005-04-11
2005-01-0233
The On-Board Distillation System (OBDS) extracts, from gasoline, a highly volatile crank fuel that enables simultaneous reduction of start-up fuel enrichment and significant ignition timing retard during cold-starting. In a previous paper we reported reductions in catalyst light-off time of >50% and THC emissions reductions >50% over Phase I of the FTP drive cycle. The research presented herein is a further development of the OBDS concept. For this work, OBDS was improved to yield higher-quality start-up fuel. The PCM calibration was changed as well, in order to improve the response to intake manifold pressure transients. The test vehicle was tested over the 3-phase FTP, with exhaust gases speciated to determine NMOG and exhaust toxics emissions. Also, the effectiveness of OBDS at generating a suitable starting fuel from a high driveability index test gasoline was evaluated.
Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

1999-10-25
1999-01-3661
A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
Technical Paper

Improved Passage Design for a Spark Plug Mounted Pressure Transducer

2007-04-16
2007-01-0652
Combustion chamber pressure measurement in engines via a passage is an old technique that is still widely used in engine research. This paper presents improved passage designs for an off-set electrode spark plug designed to accept a pressure transducer. The spark plug studied was the Champion model 304-063A. Two acoustic models were developed to compute the resonance characteristics. The new designs have a resonance frequency in a range higher than the fundamental frequency expected from knock so that the signal can be lowpass filtered to remove the resonance and not interfere with pressure signal components associated with combustion phenomena. Engine experiments verified the spark plug resonance behavior. For the baseline engine operating condition approximately 50 of 100 cycles had visible passage resonance in the measured pressure traces, at an average frequency of 8.03 kHz.
Technical Paper

Initial Study of Railplugs as an Aid for Cold Starting of Diesels

1994-02-01
940108
The results of continuing investigations of a new type of ignitor, the railplug, are reported. Previous studies have shown that railplugs can produce a high velocity jet of plasma. Additionally, railplugs have the potential of assuring ignition under adverse conditions, such as cold start of an IDI diesel engine, because the railplug plasma can force ignition in the combustion chamber rather than relying on autoignition under cold start conditions. In this paper, engine data are presented to demonstrate the improved cold starting capability obtainable with railplugs. Data acquired using a railplug are compared to results obtained using no assist and using glow plugs. The engine used for this investigation will not start without glow plugs (or some starting aid) at temperatures below O°C, and the manufacturer's specification of the cold start limit for this engine using glow plugs is -24°C. Railplugs are able to initiate combustion at -29°C in one to two seconds with no preheating.
X