Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A Comparative Analysis of WHR System in HD Engines Using Conventional Diesel Combustion and Partially-Premixed Combustion

2012-09-24
2012-01-1930
In the truck industry there is a continuous demand to increase the efficiency and to decrease the emissions. To acknowledge both these issues a waste heat recovery system (WHR) is combined with a partially premixed combustion (PPC) engine to deliver an efficient engine system. Over the past decades numerous attempts to increase the thermal efficiency of the diesel engine has been made. One such attempt is the PPC concept that has demonstrated potential for substantially increased thermal efficiency combined with much reduced emission levels. So far most work on increasing engine efficiency has been focused on improving the thermal efficiency of the engine while WHR, which has an excellent potential for another 1-5 % fuel consumption reduction, has not been researched that much yet. In this paper a WHR system using a Rankine cycle has been developed in a modeling environment using IPSEpro.
Technical Paper

A Droplet Size Investigation and Comparison Using a Novel Biomimetic Flash-Boiling Injector for AdBlue Injections

2016-10-17
2016-01-2211
Increased research is being driven by the automotive industry facing challenges, requiring to comply with both current and future emissions legislation, and to lower the fuel consumption. The reason for this legislation is to restrict the harmful pollution which every year causes 3.3 million premature deaths worldwide [1]. One factor that causes this pollution is NOx emissions. NOx emission legislation has been reduced from 8 g/kWh (Euro I) down to 0.4 g/kWh (Euro VI) and recently new legislation for ammonia slip which increase the challenge of exhaust aftertreatment with a SCR system. In order to achieve a good NOx conversion together with a low slip of ammonia, small droplets of Urea solution needs to be injected which can be rapidly evaporated and mixed into the flow of exhaust gases.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Technical Paper

A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies

2000-03-06
2000-01-0332
A computer simulation of the Homogenous Charge Compression Ignition (HCCI) four-stroke engine has been developed for combustion and performance studies. The simulation couples models for mass, species, and energy within a zero-dimensional framework. The combustion process is described via a user-defined chemical kinetic mechanism. The CHEMKIN libraries have been used to formulate a stiff chemical kinetic solver suitable for integration within a complete engine cycle simulation, featuring models of gas exchange, turbulence and wall heat transfer. For illustration, two chemical kinetics schemes describing hydrogen and natural gas chemistry have been implemented in the code. The hydrogen scheme is a reduced one, consisting of 11 species and 23 reactions. The natural gas chemistry is described via the GRI-mechanism 3.0 that considers 53 species and 325 reactions, including NOx chemistry.
Technical Paper

A Machine Learning Approach to Information Extraction from Cylinder Pressure Sensors

2012-04-16
2012-01-0440
As the number of actuators and sensors increases in modern combustion engines, the task of optimizing engine performance becomes increasingly complex. Efficient information processing techniques are therefore important, both for off-line calibration of engine maps, and on-line adjustments based on sensor data. In-cylinder pressure sensors are slowly spreading from laboratory use to production engines, thus making data with high temporal resolution of the combustion process available. The standard way of using the cylinder pressure data for control and diagnostics is to focus on a few important physical features extracted from the pressure trace, such as the combustion phasing CA50, the indicated mean effective pressure IMEP, and the ignition delay. These features give important information on the combustion process, but much information is lost as the information from the high-resolution pressure trace is condensed into a few key parameters.
Journal Article

A Model-Based Injection-Timing Strategy for Combustion-Timing Control

2015-04-14
2015-01-0870
The combustion timing in internal combustion engines affects the fuel consumption, in-cylinder peak pressure, engine noise and emission levels. The combination of an in-cylinder pressure sensor together with a direct injection fuel system lends itself well for cycle-to-cycle control of the combustion timing. This paper presents a method of controlling the combustion timing by the use of a cycle-to-cycle injection-timing algorithm. At each cycle the currently estimated heat-release rate is used to predict the in-cylinder pressure change due to a combustion-timing shift. The prediction is then used to obtain a cycle-to-cycle model that relates combustion timing to gross indicated mean effective pressure, max pressure and max pressure derivative. Then the injection timing that controls the combustion timing is decided by solving an optimization problem involving the model obtained.
Technical Paper

A Study of a Glow Plug Ignition Engine by Chemiluminescence Images

2007-07-23
2007-01-1884
An experimental study of a glow plug engine combustion process has been performed by applying chemiluminescence imaging. The major intent was to understand what kind of combustion is present in a glow plug engine and how the combustion process behaves in a small volume and at high engine speed. To achieve this, images of natural emitted light were taken and filters were applied for isolating the formaldehyde and hydroxyl species. Images were taken in a model airplane engine, 4.11 cm3, modified for optical access. The pictures were acquired using a high speed camera capable of taking one photo every second or fourth crank angle degree, and consequently visualizing the progress of the combustion process. The images were taken with the same operating condition at two different engine speeds: 9600 and 13400 rpm. A mixture of 65% methanol, 20% nitromethane and 15% lubricant was used as fuel.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Technical Paper

A Turbo Charged Dual Fuel HCCI Engine

2001-05-07
2001-01-1896
A 6-cylinder truck engine is modified for turbo charged dual fuel Homogeneous Charge Compression Ignition (HCCI) engine operation. Two different fuels, ethanol and n-heptane, are used to control the ignition timing. The objective of this study is to demonstrate high load operation of a full size HCCI engine and to discuss some of the typical constraints associated with HCCI operation. This study proves the possibility to achieve high loads, up to 16 bar Brake Mean Effective Pressure (BMEP), and ultra low NOx emissions, using turbo charging and dual fuel. Although the system shows great potential, it is obvious that the lack of inlet air pre heating is a drawback at low loads, where combustion efficiency suffers. At high loads, the low exhaust temperature provides little energy for turbo charging, thus causing pump losses higher than for a comparable diesel engine. Design of turbo charger therefore, is a key issue in order to achieve high loads in combination with high efficiency.
Technical Paper

A Visualization Test Setup for Investigation of Water-Deposit Interaction in a Surrogate Rectangular Cooler Exposed to Diesel Exhaust Flow

2012-04-16
2012-01-0364
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOx emissions. The presence of a cool surface in the hot exhaust causes particulate soot deposition as well as hydrocarbon and water condensation. Fouling experienced through deposition of particulate matter and hydrocarbons results in degraded cooler effectiveness and increased pressure drop. In this study, a visualization test setup is designed and constructed so that the effect of water condensation on the deposit formation and growth at various coolant temperatures can be studied. A water-cooled surrogate rectangular channel is employed to represent the EGR cooler. One side of the channel is made of glass for visualization purposes. A medium duty diesel engine is used to generate the exhaust stream.
Technical Paper

Advanced Two-Actuator EUI and Emission Reduction for Heavy-Duty Diesel Engines

2003-03-03
2003-01-0698
A very flexible choice of fuel injection characteristics can be obtained with an advanced electronic unit injector that has been developed with two electronically controlled valves. Single-cylinder engine tests have demonstrated the potential of this advanced EUI system for a heavy-duty diesel engine. Substantial increases in injection pressure can be programmed electronically at individual engine speed/load conditions, compared with a baseline EUI system, to provide much faster rates of air/fuel mixing. Simulated US and European emissions cycle results, with the optimised two-actuator EUI and EGR, show substantially improved soot particulate versus NOx results and lower BSFC compared with a baseline EUI result. A high-pressure post injection has the potential to give further soot reduction.
Technical Paper

Advanced hybrid electronic unit injector with accumulator for enhanced multiple injection and ultra high injection pressure capability

2007-07-23
2007-01-1895
In order to meet new worldwide emission regulations for heavy-duty diesel engines and to provide high specific power output without fuel consumption penalties there is a requirement for the fuel injection system to have a flexible choice of injection characteristics. Such a fuel injection system has to provide multiple injections, modulated injection pressures and rates for every injection, and possibly variable spray cone angle to accommodate early injection without wall wetting whilst maintaining conventional injection for rated power. The aim of this paper is to present the advanced hybrid electronic unit injector system (EUI). This system incorporates an accumulator rail, which enables high pressure multiple injection events at different injection pressures for a very wide range of injection timings that would not normally be achievable using a conventional EUI system and single lobe EUI camshaft.
Technical Paper

An Early-Design Methodology for Predicting Transient Fuel Economy and Catalyst-Out Exhaust Emissions

1997-05-19
971838
An early-design methodology for predicting both expected fuel economy and catalyst-out CO, HC and NOx concentrations during arbitrarily-defined transient cycles is presented. The methodology is based on utilizing a vehicle-powertrain model with embedded maps of fully warmed up engine-out performance and emissions, and appropriate temperature-dependent correction factors to account for not fully warmed up conditions during transients. Similarly, engine-out emissions are converted to catalyst-out emissions using conversion efficiencies based on the catalyst brick temperature. A crucial element of the methodology is hence the ability to predict heat flows and component temperatures in the engine and the exhaust system during transients, consistent with the data available during concept definition and early design phases.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Boosting for High Load HCCI

2004-03-08
2004-01-0940
Homogeneous Charge Compression Ignition (HCCI) holds great promises for good fuel economy and low emissions of NOX and soot. The concept of HCCI is premixed combustion of a highly diluted mixture. The dilution limits the combustion temperature and thus prevents extensive NOX production. Load is controlled by altering the quality of the charge, rather than the quantity. No throttling together with a high compression ratio to facilitate auto ignition and lean mixtures results in good brake thermal efficiency. However, HCCI also presents challenges like how to control the combustion and how to achieve an acceptable load range. This work is focused on solutions to the latter problem. The high dilution required to avoid NOX production limits the mass of fuel relative to the mass of air or EGR. For a given size of the engine the only way to recover the loss of power due to dilution is to force more mass through the engine.
Technical Paper

Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition

2011-04-12
2011-01-1179
Homogeneous charge compression ignition (HCCI) has received much attention in recent years due to its ability to reduce both fuel consumption and NO emissions compared to normal spark-ignited (SI) combustion. However, due to the limited operating range of HCCI, production feasible engines will need to employ a combination of combustion strategies, such as stoichiometric SI combustion at high loads and leaner burn spark-assisted compression ignition (SACI) and HCCI at intermediate and low loads. The goal of this study was to extend the high load limit of HCCI into the SACI region while maintaining a stoichiometric equivalence ratio. Experiments were conducted on a single-cylinder research engine with fully flexible valve actuation. In-cylinder pressure rise rates and combustion stability were controlled using cooled external EGR, spark assist, and negative valve overlap. Several engine loads within the SACI regime were investigated.
X