Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 16576
Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Technical Paper

09 AVL Lean Burn Systems CCBR and CBR Light for Fuel Economy and Emission Optimization on 4-Stroke Engines

2002-10-29
2002-32-1778
The CBR [1] (Controlled Burn Rate) is a port deactivation concept developed by AVL and is already applied in series production cars. The benefit of this concept is the low engine-out emission (CO, HC and NOx) and good fuel economy. By creating turbulent kinetic energy at the correct time and place in the combustion chamber a rapid and stable combustion occurs which allows to run the engine well above a Lambda Excess Air Ratio of 1.5. The CBR system features two different intake ports, one charge motion port and one filling port. Additionally a device for port-deactivation (slider, butterfly) is applied. At part load points and lower engine speeds the filling port is switched off. The CBR concept was now evoluted for compact engines as CCBR - with carburetor and as CBR Light - for engines with electronic fuel injection. CCBR stands for Carbureted Controlled Burn Rate.
Technical Paper

110 Ton Payload on Two Axles with Hydro-Mechanical Drive

1966-02-01
660237
Late developments in tires and in lightweight, high horsepower engines and transmissions have enabled the earthmoving and mining industry equipment manufacturers to design and produce several types of preproduction 100-ton capacity trucks. A straight-forward approach to the design of a 110-ton end dump truck on two axles with a hydro-mechanical drive was followed by KW-Dart Truck Co. to produce a low cost per ton-mile vehicle.
Technical Paper

125cc Small Engine Fuel Injection System with Low Emissions Solutions

2004-09-27
2004-32-0094
In many countries of the world, carburetor motorcycles are the major transportation system for people. The large volumes of these motorcycles contribute to high levels of urban emissions and this fact promotes the relevant emissions regulations to become more stringent. This paper presents an approach to satisfy various new emissions regulations such as Euro-III and Taiwan 4th generation emissions regulations by optimizing the 4-stroke PFI (Port Fuel Injection) engine management system (EMS) and after-treatment system.
Technical Paper

16 Optimisation of a Stratified Charge Strategy for a Direct Injected Two-Stroke Engine

2002-10-29
2002-32-1785
Direct fuel injection is becoming mandatory in two-stroke S.I. engines, since it prevents one of the major problems of these engines, that is fuel loss from the exhaust port. Another important problem is combustion irregularity at light loads, due to excessive presence of residual gas in the charge, and can be solved by charge stratification. High-pressure liquid fuel injection is able to control the mixing process inside the cylinder for getting either stratified charge at partial loads or quasi-stoichiometric conditions, as it is required at full load. This paper shows the development of this solution for a small engine for moped and light scooter, using numeric and experimental tools. In order to obtain the best charge characteristics at every load and engine speed, different combustion chambers have been conceived and studied, examining the effects of combustion chamber geometry, together with injector position and injection timing
Technical Paper

180MPa Piezo Common Rail System

2006-04-03
2006-01-0274
The challenge for the diesel engines today is to reduce harmful emissions, such as particulate matter (PM) and Nitrogen oxides (NOx), and enhance the fuel efficiency and power, which are its main advantages. To meet this challenge, DENSO has developed an advanced common rail system (CRS) that uses piezo actuated fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa, currently the world's highest commercially available diesel fuel injection pressure. The DENSO piezo injector incorporates an internally developed piezoelectric element that energizes quicker than its solenoid counterpart, thereby reducing the transition time for the start and end of the fuel injection event. The piezoelectric element and unique passage structure of the DENSO injector combine to provide a highly reliable and responsive fuel injection event.
Technical Paper

1997 UTEP LPP-FI Propane Challenge Vehicle

1998-02-23
980490
As part of the 1997 Propane Vehicle Challenge, a team of twelve UTEP students converted a 1996 Dodge Grand Caravan with a 3.3 L V6 engine to dedicated Liquefied Petroleum Gas (LPG) operation according to the 1997 Propane Vehicle Challenge (PVC) competition rules (16). The 1997 UTEP team developed an LPG liquid phase port fuel injection (LPP-FI) system for the minivan. The UTEP design strategy combines simplicity and sound engineering practices with the effective use of heat resistant materials to maintain the LPG in the liquid phase at temperatures encountered in the fuel delivery system. The team identified two options for fuel storage with in-tank fuel pumps. The competition vehicle incorporates a five-manifold eight inch diameter Sleegers Engineering LPG tank fitted with a Walbro LPTS in-tank pump system, providing a calculated range of 310 city miles and 438 highway miles.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

2000-09-11
2000-01-2574
A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Journal Article

1D Mathematical Model Development for Prediction and Mitigation of Vehicle Pull Considering Suspension Asymmetry and Tire Parameters

2021-09-22
2021-26-0502
Error in suspension asymmetry or tire parameters may lead to vehicle drifting laterally from its intended straight-line path, which is called vehicle pull. Driver then needs to apply constant steering correction to maintain the vehicle in straight line which will lead to high driver fatigue and deteriorate driving experience. Manufacturing a perfectly symmetric suspension system is impractical, however an insight into the manufacturing tolerances of suspension system at the early design stage can be extremely useful. Also tire force and moment parameters at straight line operation and its maximum allowable variations will help in defining the tire parameter specifications and tolerances. The objective of this study was to develop a 1D model of suspension and tire system which can predict the torque experienced in steering and drift of the vehicle from straight line due to the tire force and moment and asymmetric suspension geometry.
Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

2017-03-28
2017-01-0819
The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
Technical Paper

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-09-09
2019-24-0132
The Injection Rate Shaping consists in a novel injection strategy to control air-fuel mixing quality via a suitable variation of injection timing that affects the injection rate profile. This strategy has already provided to be useful to increase combustion efficiency and reduce pollutant emissions in the modern compression ignition engines fed with fossil Diesel fuel. But nowadays, the ever more rigorous emission targets are enhancing a search for alternative fuels and/or new blends to replace conventional ones, leading, in turn, a change in the air-fuel mixture formation. In this work, a 1D model of spray injection aims to investigate the combined effects of both Injection Rate Shaping and alternative fuels on the air-fuel mixture formation in a compression ignition engine. In a first step, a ready-made model for conventional injection strategies has been set up for the Injection Rate Shaping.
Technical Paper

1D Modeling of the Outwardly Opening Direct Injection for Internal Combustion Engines Operating with Gaseous and Liquid Fuels

2021-09-05
2021-24-0006
The in-cylinder direct injection of fuels can be a further step towards cleaner and more efficient internal combustion engines. However, the injector design and its characterization, both experimental and from numerical simulation require accurate diagnostics and efficient models. This work aims to simulate the complex behavior of the gaseous and liquid jets through an outwardly opening injector characterized by optical diagnostics using a one-dimensional model without using three dimensional models. The behavior of the jet from an outwardly opening injector changes according to the type of fuel. In the case of the gas, the experimental investigations put in evidence three main jet regions: 1) near-field region where the jet shows a complex gas-dynamic structure; 2) transition region characterized by intense mixing; 3) far-field region characterized by a fully developed subsonic turbulent jet.
Technical Paper

1D Thermo-Fluid Dynamic Simulation of a High Performance Lamborghini V12 S.I. Engine

2005-04-11
2005-01-0692
This paper describes the development and application of the 1D thermo-fluid dynamic research code GASDYN to the simulation of a Lamborghini 12 cylinder, V 60°, 6.2 L automotive S.I. engine. The model has been adopted to carry out an integrated simulation (thermodynamic, fluid dynamic and chemical) of the engine coupled to its intake and exhaust manifolds, in order to predict not only the wave motion in the ducts and its influence on the cylinder gas exchange process, but also the in-cylinder combustion process and the pollutant emission concentration along the exhaust system. The gas composition in the exhaust pipe system is dictated by the cylinder discharge process, after the calculation of the combustion via a thermodynamic multi-zone model, based on a “fractal geometry” approach.
Technical Paper

1D Tire Model Parameter Synthesis for Vehicle Handling Targets Assessment “A Strategy of Optimization and Evaluation of Tire Math’s”

2019-01-09
2019-26-0361
Handling performance of a vehicle is a key characteristic determining the response of vehicle under different operating scenarios. An insight into these vehicle-handling characteristics at early stage can be extremely useful in the design and development process. Tire characterization and tuning is important and mandatory to scrutinize each functional and individual parameter of tire. Tire force and moment data is having a significant effect in vehicle handling. Segregation of tire parameter, which is contributing vehicle-handling performance, helps to identify and perform optimization for improvisation. The main objective of this study is development and integration optimized 1D tire model into multibody dynamics model of the vehicle to observe various vehicle compliances towards its handling performance target.
Technical Paper

1D-3D Coupled Simulation of the Fuel Spray Propagation Inside the Air-Box of a Moto3 Motorbike: Analysis of Spray Targeting and Injection Timing

2017-03-28
2017-01-0520
In this work an integration between a 1D code (Gasdyn) with a CFD code (OpenFOAM®) has been applied to improve the performance of a Moto3 engine. The four-stroke, single cylinder S.I. engine was modeled, in order to predict the wave motion in the intake and exhaust systems and to study how it affects the cylinder gas exchange process. The engine considered was characterized by having an air induction system with integrated filter cartridge, air-box and intake runner, including two fuel injectors, resulting in a complex air-path from the intake mouth to the intake valves, which presents critical aspects when a 1D modeling is addressed. The exhaust and intake systems have been optimized form the point of view of the wave action. However, due to the high revolution speed reached by this type of engine, the interaction between the gas stream and the fuel spray becomes a key aspect to be addressed in order to achieve the best performance at the desired operating condition.
Technical Paper

2-Butanone Laminar Burning Velocities - Experimental and Kinetic Modelling Study

2015-09-01
2015-01-1956
2-Butanone (C4H8O) is a promising alternative fuel candidate as a pure as well as a blend component for substitution in standard gasoline fuels. It can be produced by the dehydrogenation of 2-butanol. To describe 2-butanone's basic combustion behaviour, it is important to investigate key physical properties such as the laminar burning velocity. The laminar burning velocity serves on the one hand side as a parameter to validate detailed chemical kinetic models. On the other hand, especially for engine simulations, various combustion models have been introduced, which rely on the laminar burning velocity as the physical quantity describing the progress of chemical reactions, diffusion, and heat conduction. Hence, well validated models for the prediction of laminar burning velocities are needed. New experimental laminar burning velocity data, acquired in a high pressure spherical combustion vessel, are presented for 1 atm and 5 bar at temperatures of 373 K and 423 K.
Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

2005-10-24
2005-01-3842
Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

1995-02-01
950461
Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
X