Refine Your Search

Topic

Search Results

Standard

ACOUSTIC EMISSION TEST METHODS

1991-03-01
HISTORICAL
J1242_199103
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether acoustic emission test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

AUTOMOTIVE METALLURGICAL JOINING

1970-10-01
HISTORICAL
J836_197010
This report is an abbreviated summary of metallurgical joining by welding, brazing, and soldering. It is generally intended to reflect current usage in the automotive industry; however, it does include some of the more recently developed processes. More comprehensive coverage of materials, processing details, and equipment required may be found in the Welding Handbook, Soldering Manual, and other publications of the American Welding Society and the American Society for Testing and Materials. AWS Automotive Welding Committee publications on Recommended Practices are particularly recommended for the design or product engineer. This report is not intended to cover mechanical joining such as rivets or screw fasteners, or chemical joining processes such as adhesive joining.
Standard

Acoustic Emission Test Methods

2018-01-09
CURRENT
J1242_201801
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether acoustic emission test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

Automotive Compacted Graphite Iron Castings

2007-12-17
HISTORICAL
J1887_200712
This SAE Standard covers the mechanical and physical requirements for Compacted Graphite Iron (CGI) castings used in automotive and allied industries. Requirements in this document include: a Tensile Strength b Yield Strength c Elongation d Graphite Morphology
Standard

Automotive Compacted Graphite Iron Castings

2018-02-15
CURRENT
J1887_201802
This SAE Standard covers the mechanical and physical requirements for Compacted Graphite Iron (CGI) castings used in automotive and allied industries. Requirements in this document include: a Tensile Strength b Yield Strength c Elongation d Graphite Morphology
Standard

Automotive Metallurgical Joining

2018-01-10
CURRENT
J836_201801
This report is an abbreviated summary of metallurgical joining by welding, brazing, and soldering. It is generally intended to reflect current usage in the automotive industry; however, it does include some of the more recently developed processes. More comprehensive coverage of materials, processing details, and equipment required may be found in the Welding Handbook, Soldering Manual, and other publications of the American Welding Society and the American Society for Testing and Materials. AWS Automotive Welding Committee publications on Recommended Practices are particularly recommended for the design or product engineer. This report is not intended to cover mechanical joining such as rivets or screw fasteners, or chemical joining processes such as adhesive joining.
Standard

CAST COPPER ALLOYS

1981-09-01
HISTORICAL
J462_198109
This standard prescribes the chemical and mechanical requirements for a wide range of copper base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B30 is suggested for this purpose.)
Standard

CAST COPPER ALLOYS

1974-10-01
HISTORICAL
J462B_197410
This standard prescribes the chemical and mechanical requirements for a wide range of copper, base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B30 is suggested for this purpose.)
Standard

CLEANLINESS RATING OF STEELS BY THE MAGNETIC PARTICLE METHOD

1993-05-01
HISTORICAL
J421_199305
This SAE Recommended Practice provides a rating procedure for the cleanliness rating of steels by the magnetic particle method. The procedure is based on counting the number of indications (frequency) and employs a weighted value to obtain a severity factor. The method outlined is similar to that described in SAE Aerospace Material Specification AMS 2301.
Standard

Carbon and Alloy Steels

2015-01-23
CURRENT
J411_201501
This SAE Information Report describes the processing and fabrication of carbon and alloy steels. The basic steelmaking process including iron ore reduction, the uses of fluxes, and the various melting furnaces are briefly described. The various types of steels: killed, rimmed, semikilled, and capped are described in terms of their melting and microstructural differences and their end product use. This document also provides a list of the commonly specified elements used to alloy elemental iron into steel. Each element’s structural benefits and effects are also included. A list of the AISI Steel Products Manuals is included and describes the various finished shapes in which steel is produced.
Standard

Cast Copper Alloys

2018-01-09
CURRENT
J462_201801
This standard prescribes the chemical and mechanical requirements for a wide range of copper base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B30 is suggested for this purpose.)
Standard

Cleanliness Rating of Steels by the Magnetic Particle Method

2018-01-09
CURRENT
J421_201801
This SAE Recommended Practice provides a rating procedure for the cleanliness rating of steels by the magnetic particle method. The procedure is based on counting the number of indications (frequency) and employs a weighted value to obtain a severity factor. The method outlined is similar to that described in SAE Aerospace Material Specification AMS 2301.
Standard

Detection of Surface Imperfections In Ferrous Rods, Bars, Tubes, and Wires

2017-12-20
CURRENT
J349_201712
This SAE Information Report provides a summary of several methods that are available for detecting, and in some instances detecting and measuring, surface imperfections in rods, bars, tubes, and wires. References relating to detailed technical information and to specific applications are enumerated in 2.2.
Standard

High Temperature Materials for Exhaust Manifolds

1999-08-01
HISTORICAL
J2515_199908
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

Hydrogen Embrittlement Testing of Ultra High Strength Steels and Stampings by Acid Immersion

2023-03-08
CURRENT
J3215_202303
This standard describes a test method for evaluating the susceptibility of uncoated cold rolled and hot rolled Ultra High Strength Steels (UHSS) to hydrogen embrittlement. The thickness range of materials that can be evaluated is limited by the ability to bend and strain the material to the specified stress level in this specification. Hydrogen embrittlement can occur with any steel with a tensile strength greater than or equal to 980 MPa. Some steel microstructures, especially those with retained austenite, may be susceptible at lower tensile strengths under certain conditions. The presence of available hydrogen, combined with high stress levels in a part manufactured from high strength steel, are necessary precursors for hydrogen embrittlement. Due to the specific conditions that need to be present for hydrogen embrittlement to occur, cracking in this test does not indicate that parts made from that material would crack in an automotive environment.
Standard

LEAKAGE TESTING

1988-12-01
HISTORICAL
J1267_198812
This information report provides basic information on leakage testing, as applied to nondestructive testing, and affords the user sufficient information so that he may decide whether leakage testing methods apply to his particular need. Detailed references are listed in Section 2.
X