Refine Your Search

Topic

Search Results

Standard

AUTOMATIC TRANSMISSIONS—MANUAL CONTROL SEQUENCE

1993-04-01
HISTORICAL
J915_199304
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks.
Standard

Automatic Transmission Hydraulic Pump Test Procedure

1999-01-28
HISTORICAL
J2311_199901
This SAE Recommended Practice provides a method to determine the performance characteristics of the hydraulic oil pumps used in automatic transmissions and automatic transaxles. This document outlines the specific tests that describe the performance characteristics of these pumps over a range of operating conditions and the means to present the test data. This document is not intended to assess pump durability.
Standard

Automatic Transmission Intake Filter Test Procedure

2021-06-22
CURRENT
J2312_202106
This test procedure is intended to apply to hydraulic pump suction filters and strainers used in automotive automatic transmissions that include hydraulic power pumps. The various paragraphs of Section 5 include a variety of tests and alternative tests that are not applicable to all filters and applications, so the engineer must specify which tests are to be performed for a particular application. These test procedures are intended to evaluate filter functional performance characteristics only, durability is not evaluated under this standard. Filter design requirements must be specified by the engineer on the filter assembly drawing, an applicable engineering specification, or summarized on an application data sheet similar to that found in this recommended practice. See Figure 6. Pressure circuit filters, both barrier and system contamination control types, are not covered under this standard.
Standard

Automatic Transmission Intake Filter Test Procedure

2005-04-26
HISTORICAL
J2312_200504
This test procedure is intended to apply to hydraulic pump suction filters and strainers used in automotive automatic transmissions that include hydraulic power pumps. The various paragraphs of Section 5, “Test Procedures,” include a variety of tests and alternative tests that are not applicable to all filters and applications, so the engineer must specify which tests are to be performed for a particular application. These test procedures are intended to evaluate filter functional performance characteristics only, durability is not evaluated under this standard. Filter design requirements must be specified by the engineer on the filter assembly drawing, an applicable engineering specification, or they may be summarized on an application data sheet similar to that found in this recommended practice. See Figure 6, “Filter Assembly Application and Data Sheet.” Pressure circuit filters, both barrier and system contamination control types, are not covered under this standard.
Standard

Automatic Transmissions - Manual Control Sequence

2017-03-09
CURRENT
J915_201703
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks. This generally refers to left hand drive mechanical shift applications.
Standard

Automatic Transmissions—Manual Control Sequence

2007-10-22
HISTORICAL
J915_200710
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks. This generally refers to left hand drive mechanical shift applications.
Standard

Automatic Transmissions—Manual Control Sequence

2000-11-02
HISTORICAL
J915_200011
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks.
Standard

Cast Iron Sealing Rings (Metric)

2015-09-02
CURRENT
J1236_201509
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design cast iron sealing rings and select acceptable width, thickness, coatings, and other accepted design details.
Standard

HYDRODYNAMIC DRIVE TEST CODE

1989-06-01
HISTORICAL
J643_198906
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed. b Input speed versus speed ratio and output speed. c Efficiency versus speed ratio and output speed. d Capacity factor versus speed ratio and output speed. e Input torque versus input speed. NOTE: For more information about these characteristics and the design of hydrodynamic drives, see "Design Practices--Passenger Car Automatic Transmissions," SAE Advances in Engineering, Vol. 5.
Standard

Hydrodynamic Drive Test Code

2000-05-16
HISTORICAL
J643_200005
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE—For more information about these characteristics and the design of hydrodynamic drives, see “Design Practices—Passenger Car Automatic Transmissions,” SAE Advances in Engineering, Vol. 5.
Standard

Hydrodynamic Drive Test Code

2023-08-01
CURRENT
J643_202308
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
Standard

Hydrodynamic Drives Terminology

2012-06-04
HISTORICAL
J641_201206
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
X