Refine Your Search

Topic

null

Search Results

Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

2008-04-14
2008-01-0764
A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
Technical Paper

A Modeling Study of SCR Reaction Kinetics from Reactor Experiments

2013-04-08
2013-01-1576
In order to further characterize and optimize the performance of Selective Catalytic Reduction (SCR) aftertreatment systems used on heavy-duty diesel engines, an accurately calibrated high-fidelity multi-step global kinetic SCR model and a reduced order estimator for on-board diagnostic (OBD) and control are desirable. In this study, a Cu-zeolite SCR catalyst from a 2010 Cummins ISB engine was experimentally studied in a flow reactor using carefully designed protocols. A 2-site SCR model describing mass transfer and the SCR chemical reaction mechanisms is described in the paper. The model was calibrated to the reactor test data sets collected under temperatures from 200 to 425 °C and SCR space velocities of 60000, 90000, and 120000 hr-1. The model parameters were calibrated using an optimization code to minimize the error between measured and simulated NO, NO₂, N₂O, and NH₃ gas concentration time histories.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

An Experimental and Modeling Study of Reaction Kinetics for a Cu-Zeolite SCR Catalyst Based on Engine Experiments

2013-04-08
2013-01-1054
A high-fidelity multi-step global kinetic Selective Catalytic Reduction (SCR) model which can predict SCR performance in engine exhaust systems is desirable for optimizing the SCR system, designing on-vehicle control systems and on-board diagnostic (OBD) functions. In this study, a Cu-zeolite SCR catalyst in the exhaust of a 2010 Cummins 6.7L ISB diesel engine was experimentally studied under both steady-state and transient conditions. Steady-state engine tests spanned SCR inlet temperatures from 250 to 400°C with a constant space velocity of 60 khr-1. A 1-D Cu-zeolite model originally developed from reactor data was improved and calibrated to the steady-state engine experimental data. The calibrated model is capable of predicting NO/NO₂ reduction, NH₃ slip, and NH₃ storage associated phenomena.
Technical Paper

Automotive Emissions of Polynuclear Aromatic Hydrocarbons

1974-02-01
740564
Automotive exhaust emissions of polynuclear aromatic (C16+) hydrocarbons (PNA) were reduced by 65-70% by current emissions control systems and by about 99% by two experimental advanced emission control systems. At a given level of emission control, PNA emission was primarily controlled by fuel PNA content through the transient storage of PNA in engine deposits and their later emission under more severe engine operating conditions. A relatively minor contribution to PNA emission was made by PNA synthesized from lower molecular weight fuel aromatics, particularly C10-C14 aromatics. Deposit-related PNA emissions were linearly correlated with the PNA content of the deposit formation fuel. In comparison with a fuel of field-average PNA content (0.5 ppm benzo(a)pyrene), a field-maximum fuel (3 ppm) contained 4 to 7 times as much of three major PNA species and caused 3 to 5 times higher emissions of these species.
Technical Paper

Closed Loop Digital Electronic Control of Diesel Engine Timing

1983-02-01
830579
The performance of a closed-loop electronic fuel injection timing control system for diesel engines has been investigated, both experimentally and analytically. The Electronic Control System (ECS) studied is a version of the “Optimizer,” a peak seeking control which can find the maximum of one variable with respect to another. In this case, it was used to find the timing for maximum brake torque (MBT). The ECS can also be operated in a “biased” mode in which it will hold the timing either advanced or retarded of MBT, but in a fixed relationship to it. Performance and emissions of a medium duty engine equipped with the ECS were measured on an engine dynamometer. The results clearly demonstrate that, for a variety of operating conditions and for two fuels, the ECS can find and hold the timing at MBT or in fixed relationship to it.
Technical Paper

Design and Computer Simulation of Microprocessor Controlled Lubricating Oil Cooling System for Truck Diesel Engine

1988-02-01
880488
A microprocessor controlled lubricating oil cooling system of truck diesel engine was designed to minimize the sump oil temperature fluctuation during start-up and nonsteady engine operations. Model reference adaptive control method is utilized in the control system design. The analysis involved in the design of the microprocessor controlled oil cooling system, and the applications of a special vehicle-engine-cooling system (VEC) computer simulation code in the implementation and testing of the model reference adaptive control strategy are described. Using the VEC simulation code, the performance of the microprocessor controlled oil cooling system and the conventionally controlled oil cooling systems were compared for the ATB, temperature disturbances, and cold weather transient tests. An explanation of each test, as well as a review of the results of comparison tests are presented.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

Dynamic Optimization of Spark Advance and Air-Fuel Ratio for a Natural Gas Engine

1989-09-01
892142
An adaptive control system which determines the optimum system parameters based on the engine response to changes in those parameters, has been tested as an ignition timing control system on several gaseous fueled engines. The changes in the MBT timing for speed, load, air-fuel ratio, and fuel type were explored. The ability of the control system to correct the timing for these parameters was demonstrated. An air-fuel ratio control based on the same technique is also discussed.
Technical Paper

Extended Kalman Filter Estimator for NH3 Storage, NO, NO2 and NH3 Estimation in a SCR

2013-04-08
2013-01-1581
This paper focuses on the development of an Extended Kalman Filter for estimating internal species concentration and storage states of an SCR using NOX and NH₃ sensors. The motivation for this work was twofold. First, knowledge of internal states may be useful for onboard diagnostic strategy development. In particular, significant errors between the outlet NOX or NH₃ sensors, reconstructed from estimated states, and the measured NOX or NH₃ concentrations may aid OBD strategies that attempt to identify particular system failure modes. Second, the EKF described estimates not only stored ammonia but also NO, NO₂ and NH₃ gas concentrations within and exiting the SCR. Exploiting knowledge of the individual species concentrations, instead of lumping them together as NOX, can yield improved closed loop urea controller performance in terms of reduced urea consumption and better NOX conversion.
Technical Paper

Mobile Electric Power Technologies for the Army of the Future

1989-09-01
891876
A technology assessment of engines, power source and electrical technologies that can meets the needs of the future U.S. Army (“Army 21”) for cost-effective generator sets is made. Considered in this assessment are: diesel engines; stratified-charge, spark-ignited engines; homogeneous-charge, spark-ignited engines; gas turbine engines; and Stirling engines. Direct energy conversion devices including batteries, fuel cells, thermal-to-electric generators, and nuclear powered systems are also considered. In addition, potential advances in electric alternators and power conditioning, applications of networking, and noise reduction methods are discussed for possible application to the Army environment. Recommendations are made for the potential application of the different technologies for the needs of Army 21.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Technical Paper

Nonintrusive Acoustic System for the Dynamic Timing of Diesel Engines

1983-02-01
830102
Vibration signals from diesel engines were analyzed for the purpose of isolating signals relating to injection or combustion which could be used to time the engines. Nonintrusive sensors, magnetically attached to the engine, were used to obtain these vibration signals. Components believed to be associated with combustion or fuel injection were electronically isolated from the remaining engine noise, and subsequently processed to produce specific timing signals. Digital data acquisition and averaging methods were used, coupled with computerized frequency analysis. The signals were experimentally correlated with the combustion process over a wide range of injection timing. The electronic processing system developed provides a real time digital measure of the timing. Data on the accuracy and correlation of experimental measurements will be presented.
Video

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

2012-06-18
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Technical Paper

Size Distribution of Diesel Soot in the Lubricating Oil

1991-10-01
912344
Soot is the largest component of contaminants found in the diesel engine lubricating oil. The soot enters lubricating oil mainly through thermophoretic deposition on the cylinder wall. Although the mechanism is still not fully understood, it is generally accepted that soot particles promote engine wear, reducing engine component service life, fuel efficiency and performance. This problem will be further exacerbated when more and more diesel engines use EGR to reduce NOx emissions and when lubricating oil consumption is drastically reduced to control particulate emissions. In this study, lubricating oil samples were taken from 7 different operating diesel engines. The size distribution and concentration of the diesel soot particles in the lubricants were investigated by methods of photosedimentation and quantitative spectrophotometry. The size distributions were compared to those of soot particles in the exhaust.
Technical Paper

The Application of Analytical Ferrography and Spectroscopy to Detect Normal and Abnormal Diesel Engine Wear

1984-10-01
841371
Analytical ferrography was used as a wear measurement tool while implimenting a procedure to calculate the wear particle generation rate and filter efficiency during laboratory diesel engine testing. The engine testing methodology with quantitative ferrography proved to be a sensitive wear measurement technique in detecting a reduction in the wear particle generation rate for a better anti-wear (API SF/CD) oil from that of a baseline API SD/CD oil. Ferrography and spectroscopy were useful as diagnostic tools for the detection and correction of the unexpected circulation of copper contaminant in the lubrication system. A journal bearing failure was detected with qualitative ferrography and verified with an engine teardown while spectroscopy did not detect the bearing failure.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

The Effect of Truck Dieselization on Fuel Usage

1981-02-01
810022
The effect of truck dieselization for three levels of diesel penetration into each of the eight classes of trucks is modeled. Diesel and total truck sales, population, mileage and yearly fuel usage data are aggregated by four truck classes representing light, medium, light-heavy and heavy-heavy classes. Four fuel economy scenario's for different technological improvements were studied. Improvement of fuel economy for light and heavy-heavy duty vehicle classes provides significant total fuel savings. Truck dieselization of light and light-heavy duty vehicle classes provides the largest improvement of fuel usage due to the fact that they have large numbers of vehicles and presently have few diesels. Total car and truck fuel usage in the 1980's shows roughly a constant demand with cars decreasing due to improved new fleet fuel economy and trucks increasing due to a larger population with better fuel economy due to dieselization and improved technology.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 2 – Model Validation Using Transient Data

1999-03-01
1999-01-0241
The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of a cooling system for an on-highway heavy duty diesel powered truck under steady and transient operation. In Part 1 of this research, the code development and verification has been presented. The revised and enhanced VECSS (version 8.1) software is capable of simulating in real-time a Freightliner FLD 120 truck with a Detroit Diesel Series 60 engine, Behr McCord radiator, Allied signal / Garrett Automotive charge air cooler and turbocharger, Kysor DST variable speed fan clutch, DDC oil and coolant thermostat. Other cooling system components were run and compared with experimental data provided by Kysor Cooling Systems. The experimental data were collected using the Detroit Diesel Electronic Control's (DDEC) Electronic Control Module (ECM) and the Hewlett Packard (HP) data acquisition system.
X