Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
Technical Paper

Comparison of Model Predictions with Temperature Data Sensed On-Board from the Li-ion Polymer Cells of an Electric Vehicle

2012-05-15
2011-01-2443
One of the challenges faced when using Li-ion batteries in electric vehicles is to keep the cell temperatures below a given threshold. Mathematical modeling would indeed be an efficient tool to test virtually this requirement and accelerate the battery product lifecycle. Moreover, temperature predicting models could potentially be used on-board to decrease the limitations associated with sensor based temperature feedbacks. Accordingly, we present a complete modeling procedure which was used to calculate the cell temperatures during a given electric vehicle trip. The procedure includes a simple vehicle dynamics model, an equivalent circuit battery model, and a 3D finite element thermal model. Model parameters were identified from measurements taken during constant current and pulse current discharge tests. The cell temperatures corresponding to an actual electric vehicle trip were calculated and compared with measured values.
Technical Paper

Exhaust Emission Reduction of Combustion Engines by Barrier Discharge - A new Reactor/Generator System

1999-10-25
1999-01-3638
An improved plasma reactor has been designed, built and evaluated. It is characterized by a reduced power per area ratio, relative to previous designs, and includes several improvements to run the whole system safely in a car. The new reactor design includes a concentric inner high voltage electrode, a grounded outer electrode, a shielded high-voltage and high temperature resistant electrical connection. A generator controller has been developed for better control of operating conditions as required during the engine cold start phase. The new generator/reactor system was installed in the exhaust pipe of a gasoline direct injection engine. HC emissions could be reduced up to 30 % in the first 40 seconds of a cold start test. In addition to HC treatment the dielectric barrier discharge has also been investigated as a method for regenerating a diesel particulate trap.
Technical Paper

Exhaust-Aftertreatment Integrated, DoE-based Calibration

2012-04-16
2012-01-1303
For on- and off-highway applications in 2012/2014 new legislative emissions requirements will be applied for both European (EURO 6/stage 4) and US (US 2010/Tier4 final) standards. Specifically the NOX-emission limit will be lowered down to 0.46 g/kWh (net power ≻ 56 kW (EU)/130 kW (US) - 560 kW). While for the previous emissions legislation various ways could be used to stay within the emissions limits (engine internal and aftertreatment measures), DeNOX-aftertreatment systems will be mandatory to reach future limits. In these kinds of applications fuel consumption of the engines is a very decisive selling argument for customers. Total cost of ownership needs to be as low as possible. The trade-off between fuel consumption and NOX emissions forces manufacturers to find an optimal solution, especially with regard to increasing fuel prices. In state-of-the-art calibration processes the aftertreatment system is considered separately from the calibration of the thermodynamics.
Technical Paper

Influence of Vehicle Operators and Fuel Grades on Particulate Emissions of an SI Engine in Dynamic Cycles

2018-04-03
2018-01-0350
With the implementation of the “Worldwide harmonized Light duty Test Procedure” (WLTP) and the highly dynamic “Real Driving Emissions” (RDE) tests in Europe, different engineering methodologies from virtual calibration approaches to Engine-in-the-loop (EiL) methods have to be considered to define and calibrate efficient exhaust gas aftertreatment technologies without the availability of prototype vehicles in early project phases. Since different types of testing facilities can be used, the effects of test benches as well as real and virtual vehicle operators have to be determined. Moreover, in order to effectively reduce harmful emissions, the reproducibility of test cycles is essential for an accurate and efficient application of exhaust gas aftertreatment systems and the calibration of internal combustion engines.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Journal Article

Performance Plus Range: Combined Battery Concept for Plug‑In Hybrid Vehicles

2013-04-08
2013-01-1525
PlugIn Hybrid Electric Vehicles (PHEV) offer the opportunity to experience electric driving without the risk of vehicle break-down due to a low battery charge state. Thus, PHEV's represent an attractive means of meeting future CO2-legislation. PHEV batteries must fulfill a divergent list of requirements: on the one hand, the battery must supply sufficient energy to ensure it can be driven an appropriate distance in EV-mode. On the other hand, even with a low state-of-charge (SOC), the battery must supply sufficient power to assist the engine in vehicle acceleration or to recuperate on deceleration. This leads to a compromise in terms of cell selection. Fundamentally, high energy cells cannot provide high charge and discharge rates and high power cells cannot provide sufficient energy.
Technical Paper

Traction Battery and Battery Control Unit Development

2012-04-16
2012-01-0122
The performance of high voltage batteries is the key factor for further success of electric vehicles. The primary areas for battery development include high voltage (HV) and functional safety, maximum power and usable energy, battery life, packaging and weight reduction. This paper explains the development of the HV battery and the battery management system for the FEV Liona fleet, a retrofit of a pure electric powertrain into a FIAT 500. The multi-disciplinary process used to develop this program includes electrical, mechanical and functional aspects. The layout of the electrical system includes cell selection, layout of modules and the interconnection of twelve modules to a battery pack. The mechanical design of mounting the battery under the floor addresses the housing issues regarding robustness and sealing, the packaging into the vehicle as well as the positioning of the HV components inside the battery.
X