Refine Your Search

Topic

Search Results

Standard

A Guide for the Damaging Effects of Tire and Wheel Failures

2022-07-06
CURRENT
AIR5699A
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Standard

A Guide to Landing Gear System Integration

2016-04-10
HISTORICAL
AIR5451
The landing gear system is a major airframe system that needs to be integrated very efficiently to minimize the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft and is divided into four sections: Landing Gear Configuration Requirements (Section 3) Landing Gear Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements. Structural elements include shock struts, braces, fittings, pins, wheels, tires and brakes.
Standard

A Guide to Landing Gear System Integration

2022-09-08
CURRENT
AIR5451A
The landing gear system is a major and safety critical airframe system that needs to be integrated efficiently to meet the overall aircraft program goals of minimizing the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large-scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft. The document structure is divided into four sections: Landing Gear System Configuration Requirements (Section 3) Landing Gear System Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear System Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements.
Standard

Aircraft Flotation Analysis

2022-12-20
CURRENT
AIR1780B
This document is divided into five parts. The first part deals with flotation analysis features and definitions to acquaint the engineer with elements common to the various methods and the meanings of the terms used. The second part identifies and describes current flotation analysis methods. Due to the close relationship between flotation analysis and runway design, methods for the latter are also included in this document. As runway design criteria are occasionally used for flotation evaluation, including some for runways built to now obsolete criteria, a listing of the majority of these criteria constitutes the third part. The fourth part of this document tabulates the most relevant documents, categorizing them for commercial and civil versus military usage, by military service to be satisfied, and by type of pavement. This document concludes with brief elaborations of some concepts for broadening the analyst’s understanding of the subject.
Standard

Aircraft Ground Flotation Analysis Methods

2022-09-14
CURRENT
ARP1821C
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft.
Standard

Environmentally Compliant Processes for Landing Gear

2022-09-08
CURRENT
AIR5479B
This SAE Aerospace Information Report (AIR) describes the performance of plating’s and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both Original Equipment Manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

Environmentally Compliant Processes for Landing Gear

2013-10-25
HISTORICAL
AIR5479A
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

Environmentally Compliant Processes for Landing Gear

2002-02-15
HISTORICAL
AIR5479
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

GLAND DESIGN: SCRAPER, LANDING GEAR, INSTALLATION

1994-04-01
HISTORICAL
AS4052
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of MIL-G-5514, the accepted gland standard for MS28775. Piston diameters, gland internal diameters, and the groove sidewall angles and surface finish are defined by MIL-G-5514, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2018-04-09
CURRENT
AS85352A
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2011-01-14
HISTORICAL
AS85352
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
X