Refine Your Search

Topic

Search Results

Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Technical Paper

Analysis of Conventional Motorcycles with the Focus on Hybridization

2016-11-08
2016-32-0031
The release of the “Regulation No. 168/2013” for the approval and market surveillance of two- or three-wheel motorcycles and quadricycles of the European Union started a new challenge for the motorcycle industry. One goal of the European Union is to achieve emission parity between passenger cars (EURO 6) and motorcycles (EURO 5) in 2020. The hybridization of motorcycle powertrains is one way to achieve these strict legislation limits. In the automotive sector, hybridization is well investigated and has already shown improvements of fuel consumption, efficiency and emission behavior. Equally, motorcycle applications have a high potential to improve efficiency and to meet customer needs as fun to drive as well. This paper describes a methodical approach to analyze conventional motorcycles regarding the energy and power demand for different driving cycles and driving conditions. Therefore, a dynamic or forward vehicle simulation within MATLAB Simulink is used.
Technical Paper

Artificial Neural Network Based Predictive Real Drive Emission and Fuel Economy Simulation of Motorcycles

2018-10-30
2018-32-0030
As the number of different engine and vehicle concepts for powered-two wheelers is very high and will even rise with hybridization, the simulation of emissions and fuel consumption is indispensable for further development towards more environmentally friendly mobility. In this work, an adaptive artificial neural network based predictive model for emission and fuel consumption simulation of motorcycles operated in real world conditions is presented. The model is developed in Matlab and Simulink and is integrated into a longitudinal vehicle dynamic simulation whereby it is possible to simulate various and not yet measured test cycles. Subsequently, it is possible to predict real drive emissions RDE and on-road fuel consumption by a minimum of previous measurement effort.
Technical Paper

Assessment of Minimum Fuel Consumption Operation Strategy for Hybrid Powersport Drive-Trains by Means of Dynamic Programming Method

2016-11-08
2016-32-0015
The hybrid-electric drivetrain permits a multitude of new control strategies like brake energy recuperation, engine start-stop operation, shifting of engine working point, as well as in some situations pure electric driving. Overall this typically allows a reduction of fuel consumption and therefore of carbon dioxide emissions. During the development process of the vehicle various drivetrain configurations have to be considered and compared. This includes decisions regarding the topology - like the position of the electrical machine in the drivetrain (e.g. at the gearbox input or output shaft), as well as the selection of the needed components based on their parameters (nominal power, energy content of the battery, efficiency etc.). To compare the chosen variants, typically the calculated fuel consumption for a given driving cycle is used.
Technical Paper

Combustion Analysis with Residual Gas as a Design Parameter for Two-Stroke Engines

2018-10-30
2018-32-0045
In a variety of applications, two-stroke engines assert their usage as a propulsion unit, for examples in off-road vehicles, scooters, hand-held power tools and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. Furthermore, two-stroke engines convince with high durability and low maintenance demand. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of two-stroke engines. The reduction of emissions and fuel consumption with a constant power level is focused on. Developments deal with the optimization of the combustion process itself or the enhancement of the exhaust gas aftertreatment. Especially in very small two-stroke engines an exhaust gas aftertreatment system is rarely applied, due to disadvantages regarding component temperatures and product costs.
Technical Paper

Comparison of Different Downsizing Strategies for 2- and 3-Cylinder Engines by the Use of 1D-CFD Simulation

2016-11-08
2016-32-0037
The internal combustion engine is still the most important propulsion system for individual mobility. Especially for the application of motorcycles and recreation vehicles the extraordinary high power density is crucial. Today, these engines are mainly 4-stroke naturally aspirated MPFI engines. The main difference to the automotive sector is the abandonment of all cost intensive technologies, like variable valve timing, intake air charging or gasoline direct injection. The need for further investigations and implementation of new technologies is given due to the very high share of total road transport emissions of motorcycles and the introduction of the emission limits of EURO5 in 2020. One possibility to reach the future emission limits is the downsizing strategy. For this, the potential for emission and fuel consumption reduction is well known.
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Technical Paper

E-Fuel applications in Non Road Mobile Machinery

2022-01-09
2022-32-0074
Professional users in particular will continue to rely on internal combustion engine drives in the future due to high power requirements and high daily energy consumption. Especially if they have to work in rural areas without the possibility of recharging batteries, such as in forestry or maintenance of road verges or railway lines. For these applications, it must be possible to run sustainable fuels for defossilization and drastically reduced CO2 emissions. This paper provides insights into a possible future fuel market and describes its evolution towards a more sustainable future from the perspective of a handheld equipment manufacturer. As developments in the fuel market are currently difficult to predict, manufacturers of hand-held power tools with combustion engines need to be prepared for changes in the composition of fuels that might become available on the market.
Journal Article

Efficiency Increase of a Conventional ICE Powertrain with CVT by 48V-Hybridization with Focus on L-Category Powersport Applications

2022-01-09
2022-32-0018
In recent years, E-mobility relevance has increased in the automotive sector, yet pure electric vehicles struggle to establish themselves in the still internal combustion engine (ICE) dominated sector of L-category and powersport applications. Battery electric hybrid L-category vehicles, as considered in this paper, combine both ICE and electric powertrains. Nowadays, numerous ICE L-category vehicles use rubber V-belt continuous variable transmissions (CVT) due to their reliability and user-friendliness, which often outweighs the drawback of relatively low efficiency. This paper not only aims to show, with the help of longitudinal dynamic simulation (LDS), how a state-of-the-art L-category ICE powertrain with special focus on the CVT can benefit from hybridization in terms of overall efficiency, but furthermore points out where the efficiency increase actually comes from and how this new knowledge can be implemented intelligently into a hybrid strategy.
Technical Paper

Exhaust Aftertreatment Technologies for PN Reduction of Motorcycles

2023-10-24
2023-01-1846
The objective of this experimental investigation was to analyze the effect of various exhaust gas aftertreatment technologies on particulate number emissions (PN) of an MPFI EU5 motorcycle. Specifically, three different aftertreatment strategies were compared, including a three-way-catalyst (TWC) with LS structure as the baseline, a hybrid catalyst with a wire mesh filter, and an optimized gasoline particulate filter (GPF) with three-way catalytic coating. Experimental investigations using the standard test cycle WMTC performed on a two-wheeler chassis dynamometer, while the inhouse particulate sampling system was utilized to gather information about size-dependent filtering efficiency, storage, and combustion of nanoparticles. The particulate sampling and measuring system consist of three condensation particle counters (CPCs) calibrated to three different size classes (SPN4, SPN10, SPN23).
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

Experimental Investigations Regarding the Potential of an Electronic Ignition Timing Control for a Lawn Mower Engine

2016-11-08
2016-32-0083
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which is even provided by the simplest engine setup, is some form of the crankshaft speed since it is essential for the functionality of the engine.
Technical Paper

Experimental Verification and Drivability Investigations of a Turbo Charged 2-Cylinder Motorcycle Engine

2014-11-11
2014-32-0112
There are several reasons for equipping an internal combustion engine with a turbo-charger. The most important motivation for motorcycle use is to increase the power to weight ratio. Focusing on the special boundary conditions of motorcycles, like the wide engine speed range or the extraordinarily high demands on response behavior, automotive downsizing technologies cannot be transferred directly to this field of application. This led to the main question: Is it possible to design a turbo-charged motorcycle engine with satisfactory drivability and response behavior? The layout of the charged motorcycle engine was derived by simulation and had to be verified by experimental investigations. Main components, like the turbo charger or the waste gate control as well as the influence of the increasing back pressure on the combustion, were verified by test bench measurements. Afterwards the operation strategy in general was investigated and applied to the prototype engine.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Journal Article

Future Engine Technology in Hand-Held Power Tools

2012-10-23
2012-32-0111
Today mankind is using highly sophisticated tools which contribute to maintain the standard of living. Nevertheless, these tools have to be further improved in the near future in order to protect health and environment as well as to ensure prosperity. Two-stroke engines equipped with a carburettor are the most used propulsion technology in hand-held power tools like chain saws and grass trimmers. The shortage of fossil resources and the necessary reduction of carbon dioxide emissions ask for improved engine efficiency. Concurrently, customers demand for an easy usage with high performance at all operating conditions, e.g. varying ambient temperature and pressure and different fuels. Moreover, world-wide emission limits will be even stricter in future. The improvement of the emission level, fuel consumption and customer benefits, while keeping the present advantages of two-stroke engines, like high specific power and simplicity, are the goals of this research work.
Technical Paper

GDI with High-Performance 2-Stroke Application: Concepts, Experiences and Potential for the Future

2004-09-27
2004-32-0043
Thanks to its unsurpassed power-to-weight ratio, its low package space and low-maintenance design, the loop-scavenged two-stroke engine with conventional mixture preparation is still being used in some sectors of vehicle engineering, such as boat drives, snow mobiles and motor scooters, as well as in hand-held applications. To maintain the potential of the 2-stroke engine for the future it is necessary to take adequate steps against the system-dependent disadvantage of the simple 2-stroke engine, namely that of higher emissions compared to 4-stroke engines. One possible solution is gasoline direct injection. Its more frequent use will increase the production numbers, making it an interesting technology even in the above-mentioned cost-sensitive applications. The current report presents various concepts of direct injection in 2-stroke engines, from air-assisted injection through to high-pressure direct injection, and compares them with traditional techniques of mixture formation.
Technical Paper

Influence of Ethanol and 2-Butanol Blended Fuels on Combustion and Emissions in a Small Displacement Two Stroke Engine

2018-10-30
2018-32-0044
Small displacement two-stroke engines are cheap and low-maintenance propulsion systems and commonly used in scooters, recreation vehicles and handheld power-tools. The restriction by emission legislation and the increasing environmental awareness of end users as well as decreasing energy resources cause a rethinking in the development of propulsion systems and fuels in these fields. Despite recent improvements of electric powertrains, two stroke engines are the challenged propulsion system in high performance handheld power tools at the moment. The reasons are the extraordinary high power to weight ratio of two-stroke engines, the high energy density of liquid fuels and the reliability of the product with respect to extreme ambient conditions. Nevertheless, further improvements on emissions and fuel consumption of small displacement two-stroke engines can be realized.
X