Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

An Investigation of the Transient DPF Pressure Drop under Cold Start Conditions in Diesel Engines

2017-10-08
2017-01-2372
To monitor emission-related components/systems and to evaluate the presence of malfunctioning or failures that can affect emissions, current diesel engine regulations require the use of on-board diagnostics (OBD). For diesel particulate filters (DPF), the pressure drop across the DPF is monitored by the OBD as the pressure drop is approximately linear related to the soot mass deposited in a filter. However, sudden acceleration may cause a sudden decrease in DPF pressure drop under cold start conditions. This appears to be caused by water that has condensed in the exhaust pipe, but no detailed mechanism for this decrease has been established. The present study developed an experimental apparatus that reproduces rapid increases of the exhaust gas flow under cold start conditions and enables independent control of the amount of water as well as the gas flow rate supplied to the DPF.
Journal Article

Analysis of the Trade-off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation

2011-08-30
2011-01-1847
This study makes use of the detailed mechanisms of n-heptane combustion, from gas reactions to soot particle formation and oxidation, and a two-stage model based on the CHEMKIN reactor network is developed and used to investigate the trade-off between soot and NOx emissions. The effects of the equivalence ratio, EGR, ambient pressure and temperature, and initial particle diameter are observed for various residence times. The results show that high rates of NOx formation are unavoidable under conditions where high reduction rates of soot particles are obtained. This suggests that suppression of the amount of soot during the formation stage is essential for simultaneous reductions in engine-out soot and NOx emissions.
Technical Paper

Chemical-Kinetic Analysis on PAH Formation Mechanisms of Oxygenated Fuels

2003-10-27
2003-01-3190
The thermal cracking and polyaromatic hydrocarbon (PAH) formation processes of dimethyl ether (DME), ethanol, and ethane were investigated with chemical kinetics to determine the soot formation mechanism of oxygenated fuels. The modeling analyzed three processes, an isothermal constant pressure condition, a temperature rising condition under a constant pressure, and an unsteady condition approximating diesel combustion. With the same mole number of oxygen atoms, the DME rich mixtures form much carbon monoxide and methane and very little non-methane HC and PAH, in comparison with ethanol or ethane mixtures. This suggests that the existence of the C-C bond promotes the formation of PAH and soot.
Technical Paper

Combustion Characteristics of Emulsified Blends of Aqueous Ethanol and Diesel Fuel in a Diesel Engine with High Rates of EGR and Split Fuel Injections

2011-08-30
2011-01-1820
Silent, clean, and efficient combustion was realized with emulsified blends of aqueous ethanol and diesel fuel in a DI diesel with pilot injection and cooled EGR. The pilot injection sufficiently suppressed the rapid combustion to acceptable levels. The thermal efficiency with the emulsified fuel improved as the heat release with the pilot injection was retarded to near top dead center, due to poor ignitability and also due to a reduction in afterburning. With the emulsified fuel containing 40 vol% ethanol and 10 vol% water (E40W10), the smokeless operation range can be considerably extended even under low fuel injection pressure or low intake oxygen content conditions.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Technical Paper

Experimental Investigation of Improving Homogeneous Charge Induced Ignition (HCII) Combustion at Medium and High Load by Reducing Compression Ratio

2017-03-28
2017-01-0765
This research focuses on the potential of Homogeneous Charge Induced Ignition (HCII) combustion meeting the Euro V emission standard on a heavy-duty multi-cylinder engine using a simple after-treatment system. However, in our previous studies, it was found that the gasoline ratio was limited in HCII by the over-high compression ratio (CR). In this paper, the effects of reducing CR on the performances of HCII at medium and high loads were explored by experimental methods. It was found that by reducing CR from 18:1 to 16:1 the peak in-cylinder pressure and the peak pressure rise rate were effectively reduced and the gasoline ratio range could be obviously extended. Thus, the combustion and emission characteristics of HCII at medium and high loads were noticeably improved. Soot emissions can be significantly reduced because of the increase of premixed combustion ratio. The reduction could be over 50% especially at high load and high speed conditions.
Technical Paper

Identification of Factors Influencing Premixed Diesel Engine Noise and Mechanism of Noise Reduction by EGR and Supercharging

2013-04-08
2013-01-0313
To determine the engine noise reduction methods, an engine noise research was conducted experimentally with a PCCI diesel engine. The engine employed in the experiments was a supercharged, single-cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave form and the cross power spectrum of the sound pressure of the engine noise. It is well known that the maximum pressure rise rate is the main parameter related to the engine noise. The PCCI engine was operated at a 1.0 MPa/°CA maximum pressure rise rate to eliminate the effects of the maximum pressure rise rate, and parameters which had the dominant effect on engine noise and combustion noise were determined.
Technical Paper

Improvements in Diesel Combustion with After-Injection

2008-10-06
2008-01-2476
The effect of after-injection on exhaust gas emissions from a DI diesel engine with a common rail injection system was experimentally investigated for a range of operating conditions. The results showed that over the whole of the operating range, some reduction in smoke emissions can be achieved with after-injection, without deterioration in thermal efficiency and other emission characteristics. The optimum quantity of after-injection for smoke reduction is 20% of the total fuel supply, and the optimum timing is just after the main injection. Visualization in a bottom view type engine showed that with after-injection, soot formation in the main-injection decrease more due to a smaller quantity of fuel than without after-injection, and soot formation with after-injection is insignificant.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Investigation into the Effect of Flame Propagation in the Gasoline Compression Ignition by Coupling G-Equation and Reduced Chemical Kinetics Combustion Model

2015-09-01
2015-01-1799
Gasoline Compression Ignition has been widely studied in recent years. The in-cylinder stratified charge in gasoline Partially Premixed Compression Ignition (PPCI) can extend the high load range with lower pressure rise rate than Homogeneous Charge Compression Ignition (HCCI). However, it is still not clear that whether there is flame propagation in the gasoline compression igntion mode and how the flame propagation influences the combustion process and pollution formation. In order to investigate the effect of flame, several gasoline compression ignition cases, including the single-stage and two-stage heat release processes, are simulated with the KIVA-3V Release 2 code in this study. The G-equation is employed to account for flame propagation, and the reduced i-octane/n-heptane mechanism is used to handle the chemical reactions. The results show that the flame propagation exists in the combustion process and it can accelerate the heat release slightly.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Mode Switch of SI-HCCI Combustion on a GDI Engine

2007-04-16
2007-01-0195
Multi-mode combustion is an ideal combustion strategy to utilize HCCI for internal combustion engines. It combines HCCI combustion mode for low-middle load and traditional SI mode for high load and high speed. By changing the cam profiles from normal overlap for SI mode to the negative valve overlap (NVO) for HCCI mode, as well as the adjustment of direct injection strategy, the combustion mode transition between SI and HCCI was realized in one engine cycle. By two-step cam switch, the throttle action is separated from the cam action, which ensures the stabilization of mode transition. For validating the feasibility of the stepped switch, the influence of throttle position on HCCI combustion was carefully studied. Based on the research, the combustion mode switch was realized in one engine cycle; the whole switch process including throttle action was realized in 10 cycles. The entire process was smooth, rapid and reliable without any abnormal combustion such as knocking and misfiring.
Technical Paper

Performance Improvements in a Natural Gas Dual Fuel Compression Ignition Engine with 250 MPa Pilot Injection of Diesel Fuel as an Ignition Source

2016-10-17
2016-01-2306
The engine performance and the exhaust gas emissions in a dual fuel compression ignition engine with natural gas as the main fuel and a small quantity of pilot injection of diesel fuel with the ultra-high injection pressure of 250 MPa as an ignition source were investigated at 0.3 MPa and 0.8 MPa IMEP. With increasing injection pressure the unburned loss decreases and the thermal efficiency improves at both IMEP conditions. At the 0.3 MPa IMEP the THC and CO emissions are significantly reduced when maintaining the equivalence ratio of natural gas with decreasing the volumetric efficiency by intake gas throttling, but the NOx emissions increase and excessive intake gas throttling results in a decrease in the indicated thermal efficiency. Under the 250 MPa pilot injection condition simultaneous reductions in the NOx, THC, and CO emissions can be established with maintaining the equivalence ratio of natural gas by intake gas throttling.
Technical Paper

Quantitative Measurements and Analysis of Ambient Gas Entrainment into Intermittent Gas Jets by Laser-Induced Fluorescence of Ambient Gas (LIFA)

1993-03-01
930970
Mixture formation processes of intermittent gas jets were visualized and quantified with high accuracy by a uniquely developed LIF technique (LIFA). Mixture strength inside gas jets was quantified by the fluorescence of iodine in the ambient gas excited by the sheet light of a Nd:YAG laser Two dimensional images of intermittent gas jets of various velocities were continuously recorded with VTR and quantified with high accuracy. The optimum conditions for measurements and accuracy with the LIFA technique were investigated. At the optimum setting of the initial iodine concentration in the ambient gas, accuracies better than 95% were obtained for the ambient gas entrainment ratio or jet concentration. The experimental results show that considerable amounts of ambient gas entrain just under the umbrella-like profile at the top of the jet. The mean jet concentration decreased with decreased nozzle diameter (D), and time elapsed after injection (Δt).
Technical Paper

Role of Wall Effect on Hot-Spot Induced Deflagration to Detonation in Iso-Octane/Air Mixture Under High Temperature and Pressure

2016-04-05
2016-01-0552
A 1-Dimensional (1-D) model of fluid dynamic and chemistry kinetics following hot spot auto-ignition has been developed to simulate the process from auto-ignition to pressure wave propagation. The role of wall effect on the physical-chemical interaction process is numerically studied. A pressure wave is generated after hot spot auto-ignition and gradually damped as it propagates. The reflection of the wall forms a reflected pressure wave with twice the amplitude of the incident wave near the wall. The superposition of the reflected and forward pressure waves reinforces the intensity of the initial pressure wave. Wall effect is determined by the distance between the hot spot center and the cylinder wall. Hot spot auto-ignition near the wall easily initiates detonation under high-temperature and high-pressure conditions because pressure wave reflection couples with chemical reactions and propagates in the mixture with high reactivity.
Technical Paper

Simultaneous Measurements of Concentration and Temperature Distributions in Unsteady Gas Jets by an Iodine LIF Method

1998-02-01
980146
A new method to simultaneously measure temperature and concentration distributions in unsteady gas jets was established with an adaptation of the laser-induced fluorescence of iodine molecules seeded into ambient gas. Using the temperature dependence of iodine fluorescence spectra, the local temperature inside jets was determined with the ratio between the fluorescence intensities of two visualized images with different wavelengths. Jet concentrations were also determined with the images for the temperature measurements. The method was applied to an unsteady argon jet injected into hot argon-iodine ambient gases. The experimental results showed that the local temperature distribution in an unsteady gas jet were quite similar to the local concentration distributions.
Technical Paper

Visualization and Heat Release Analysis of Premixed Diesel Combustion with Various Fuel Ignitabilities and Oxygen Concentrations in a Constant Volume Combustion Vessel

2013-04-08
2013-01-0899
Low NOx and soot free premixed diesel combustion can be realized by increasing ignition delays in low oxygen atmospheres, as well as the combustion here also depends on fuel ignitability. In this report single intermittent spray combustion with primary reference fuels and a normal heptane-toluene blend fuel under several oxygen concentrations in a constant volume combustion vessel was analyzed with high-speed color video and pressure data. Temperature and KL factor distributions are displayed with a 2-D two-color method. The results show that premixing is promoted with a decrease in oxygen concentration, and the local high temperature regions, above 2200 K, as well as the duration of their appearance decreases with the oxygen concentration. With normal heptane, mild premixed diesel combustion can be realized at 15 vol% oxygen and there is little luminous flame.
X