Refine Your Search

Author

Affiliation

Search Results

Technical Paper

A Study of the IIHS Frontal Pole Impact Test

2008-04-14
2008-01-0507
According to the Fatality Analysis Reporting System (FARS, 1995-2004), over 20 percent of fatal frontal crashes are into fixed narrow objects such as trees and utility poles in real world crashes. The Insurance Institute for Highway Safety (IIHS) has studied the frontal pole impact test since 2005, conducting a series of tests using passenger cars that are rated “Good” from the IIHS frontal offset test. Passenger cars were impacted into a 10-inch-diameter rigid pole at 64-kph. The alignment of the pole along the centerline of the vehicles in frontal impact was varied to study the influence on dummy injury metrics. This paper evaluates the frontal center pole test conducted by the IIHS. The IIHS tests 21 crashes impacted by the rigid pole using 5 vehicle models with two dummies in the front seat. Intrusions and dummy readings were reviewed according to the frontal offset rating criteria of the IIHS for structural performance and injury measurement.
Journal Article

A Study of the Rear Seat Occupant Safety using a 10-Year-Old Child Dummy in the New Car Assessment Program

2008-04-14
2008-01-0511
The National Highway Traffic Safety Administration (NHTSA) conducted a total of 28 frontal crashes in the New Car Assessment Program (NCAP) involving the 10-year-old child Hybrid III dummy. The 10-year-old child dummy was in the rear seat. All types of vehicles (passenger cars, sport utility vehicles, vans and pick-up trucks) were tested to assess the effect of restraint systems such as booster and pretensioner on the rear seat occupant. In this study, the readings of the 10-year-old child dummy in rear-left and rear-right seat positions are examined. The authors apply a possible 5 star rating system, based on head and chest readings of the 10-year-old dummy. The paper also assesses the safety performance of rear seat occupants and the effect of the restraint systems on a child in the rear seat. This paper suggests that a star rating for rear seat occupants is independent of the present ratings for the driver and front adult passenger in NCAP.
Technical Paper

AN ANALYSIS OF NCAP SIDE IMPACT CRASH DATA

1998-05-31
986235
Since 1990, the National Highway Traffic Safety Administration (NHTSA) implemented a dynamic side impact compliance test. This compliance test, Federal Motor Vehicle Safety Standard (FMVSS) No. 214, is a nearly right angle side impact in which the striking vehicle moves at 53.6 kmph into the struck vehicle. In 1997, NHTSA began testing passenger cars in side impact in the New Car Assessment Program (NCAP). In the USA NCAP side impact, the striking vehicle is towed at a 8 kmph higher speed than in the compliance test. An analysis has begun on the data from the first NCAP side impact tests, thirty-two in number. In the crashes, accelerometers were installed in the door and door frames of the struck vehicle. Using the accelerometers on the vehicle structure and in the side impact dummy, the crash event was investigated. One tool used in the investigation was the velocity-versus-time diagram.
Technical Paper

Ankle Joint Injury Mechanism for Adults in Frontal Automotive Impact

1991-10-01
912902
Accident cases are examined to determine the injury mechanism for foot/ankle moderate and greater injuries in vehicle crashes. The authors examine 480 in-depth cases from the National Accident Sampling System for the years 1979 through 1987. An injury mechanism - a description of how the foot/ankle physically interacted with the interior of the vehicle - is assigned to each of the injured occupants. For the accidents in which the 480 occupants were injured, the more prominent types of vehicle collisions are characterized.
Technical Paper

Assessing Arm Injury Potential From Deploying Air Bags

1997-02-24
970400
A study of the National Accident Sampling System (NASS) found an increase in upper extremity injuries when drivers were restrained by a seat belt and air bag as opposed to a seat belt alone. These injuries were attributed to forces from the air bag deploying or the air bag projecting the arm into vehicle components or the upper body of the driver. Two evaluation methods were used to assess the extent of injury and aggressiveness of different driver side air bags. The RAID, developed by Conrad Technology, and the Hybrid III instrumented arm, tested at the Vehicle Research and Test Center, were used in static testing to evaluate the effect of air bags on the arm. The positions of the RAID and the Hybrid III arm simulated the arm in four different turning positions with the forearm across the center of the wheel. Both devices recorded arm moments and accelerations. Film analysis determined the cause of the peak resultant moment for each bag in the four configurations.
Technical Paper

Causes and Measurement of Vehicle Aggressiveness in Frontal Collisions

1980-09-01
801316
This paper presents an analysis of the results of a series of crash tests conducted by the NHTSA to identify structural parameters contributing to vehicle aggressiveness in frontal collisions between large and small cars. Effects of front structure stiffness, engine mass and engine position were investigated. In addition, an analytical study of car-to-car and car-to-barrier crashes is reported. A lumped parameter car model was used with multiple linear regression analysis to determine the significance of specific vehicle parameters on aggressiveness, and the capabilities of different types of barriers to “measure” that aggressiveness.
Technical Paper

Comparison of Current Anthropomorphic Test Devices in a Three-Point Belt Restraint System

1983-10-17
831636
Frontal sled tests of the Part 572, APR, and Hybrid III dummies were conducted in a three-point restraint system at 50 km/hr velocity change. The tests were conducted to evaluate the dummy responses in a tightly controlled systems environment, and to compare the dummy responses to previously established cadaver responses from the same environment. The Hybrid III dummy measurement repeatability was found to be better than either the Part 572 or APR dummies, although the thoracic acceleration responses from all three are shown to be quite similar to cadavers. Correlation of the dummy measurements are made to a limited amount of both the cadaver data and accident data from the National Crash Severity Study.
Technical Paper

Comparison of Models Simulating Occupant Response with Air Bags

1984-02-01
840451
Two computer models, ABAG 19 and HSRI-3D, were validated against experimental data to determine and compare their capability for simulating the responses of air bag restrained automobile occupants in severe frontal collisions. Standard sets of model input parameters were developed for both driver and passenger. The primary objective was to determine which model was best suited for determining potential crashworthiness in a large number of production vehicles. Advantages and disadvantages of the models were determined, using criteria such as accuracy, ease of use, quality of documentation and user orientation.
Technical Paper

Comparison of Vehicle Structural Integrity and Occupant Injury Potential in Full-frontal and Offset-frontal Crash Tests

2000-03-06
2000-01-0879
The frontal crash standard in the USA specifies that the full front of a vehicle impact a rigid barrier. Subsequently, the European Union developed a frontal crash standard that requires 40 percent of the front of a vehicle to impact a deformable barrier. The present study conducted paired crashes of vehicles using the full-frontal barrier procedure and the 40 percent offset deformable barrier procedure. In part, the study was to examine the feasibility of adding an offset test procedure to the frontal crash standard in the USA. Frontal-offset and full-frontal testing was conducted using both the mid-size (50th percentile male Hybrid III) and the small stature (5th percentile female Hybrid III) dummies. Five vehicle models were used in the testing: Dodge Neon, Toyota Camry, Ford Taurus, Chevrolet Venture and Ford Contour. In the crash tests, all dummies were restrained with the available safety belt systems and frontal air bags.
Technical Paper

Correlation of Side Impact Dummy/Cadaver Tests

1981-10-01
811008
This paper is part of a four year study to systematically define side impact injury in terms of the kinetic response of a suitable anthropomorphic dummy. Last year a paper was presented at the Experimental Safety Vehicle Conference in Germany which analyzed side impact dummy response and injury prediction based on cadaver data generated by the Highway Safety Research Institute. These subjects were generally older than those discussed in the current paper. This paper includes data from a number of University of Heidelberg cadaver sled tests-including padding tests which we recently found to be (1) critical for a definitive analysis and (2) previously not available. Two advanced dummies, whose design specifications are based upon biomechanical data, are currently being evaluated by the biomechanical community. The two dummies are (1) a Side Impact Dummy (SID) designed by the Highway Safety Research Institute (HSRI) and (2) the Association Peugeot-Renault (APR) dummy from France.
Technical Paper

Determination of Crashworthiness in Full Frontal Car/Car Collisions by Fixed Rigid Barrier Testing

1983-02-01
830611
Three groups of crash tests were analyzed to determine how well the standard fixed rigid barrier measures potential crash survivability in small cars when impacted full frontally by larger cars. In addition to experimental results, simple analytical methods were used to determine and compare the level of occupant protection in the small cars. The fixed rigid barrier appears to be an accurate crashworthiness-measuring device for small cars in high speed full frontal car/car collisions, if test velocities are selected on the basis of equivalent energy between car/barrier and car/car collisions as opposed to equivalent momentum.
Technical Paper

Development of Dummy and Injury index for NHTSA's Thoracic Side Impact Protection Research Program

1984-04-01
840885
Since 1976, the National Highway Traffic Safety Administration (NHTSA) has pursued biomechanical research concerning lateral impacts to automotive occupants. These efforts have included (a) the generation of an experimental data base containing both detailed engineering and physiological responses of human surrogates experiencing lateral impacts, (b) the analysis of this data base to develop both an injury index linking the engineering parameters to an injury severity level and response corridors to guide in the design of a test dummy, and (c) the development and refinement of a side impact test dummy suitable for use in safety systems development and evaluation. The progress of these efforts has been periodically reported in the literature [1-17]* and these references document the evolutionary trail NHTSA has followed over the duration of this research program.
Technical Paper

Development of a Component Level Head Impact Test Device

1986-10-27
861889
This paper describes the development of a free-motion headform which was designed to permit the simulation of head impacts common in the automotive crash environment. A Hybrid III headform was modified allowing it to be propelled in free flight at up to 64.4 km/h velocities. The headform was also instrumented with a nine-accelerometer array to permit the calculation of rotational accelerations. Tests were conducted to determine the repeatability and sensitivity of the device, and component test results were compared with results from a full scale crash test in which Hybrid III dummies were used. Comparisons are also made with accident investigation information obtained from the NHTSA Washington Hospital Trauma Center study.
Technical Paper

Durability, Repeatability and Reproducibility of the NHTSA Side Impact Dummy

1983-10-17
831624
A series of seventy-two pendulum-type impact tests were performed on six NHTSA Side Impact Dummies (SID) to assess dummy repeatability and reproducibility. A quantity called the Normalized Integral Square Error (NISE) is used to quantify the difference between acceleration responses from repeat tests. Limits for the NISE are developed to define acceptable differences in terms of phase shift, amplitude, and shape. Results indicate that the SID is repeatable in all of the test cases considered and fairly reproducible in 90° lateral impacts although this is not shown conclusively. Before the testing could be performed it was necessary to correct several durability problems with the SID that were identified while early production versions of the dummy were being tested. These modifications are described briefly.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

Experimental Investigation of Crash Barriers for Measuring Vehicle Aggressiveness–Fixed Rigid Barrier Initial Results

1981-02-01
810093
This paper presents the initial results of a crash test program designed to evaluate the ability of three different barriers to measure vehicle aggressiveness. The barriers included in the study are the fixed rigid (FRB), load cell fixed (LCFB) and moving deformable (MDB). Previous crash tests and analytical studies conducted to determine causes of aggressiveness and ways of measuring aggressiveness are reviewed. In this paper, full frontal car-to-car and FRB crash test results of an aggressive and a non-aggressive car are presented and compared.
Technical Paper

Foot and Ankle Injuries to Drivers in Between-Rail Crashes

2013-04-08
2013-01-1243
The research question investigated in this study is what are the key attributes of foot and ankle injury in the between-rail frontal crash? For the foot and ankle, what was the type of interior surface contacted and the type of resulting trauma? The method was to study with in-depth case reviews of NASS-CDS cases where a driver suffered an AIS=2 foot or ankle injury in between-rail crashes. Cases were limited to belted occupants in vehicles equipped with air bags. The reviews concentrated on coded and non-coded data, identifying especially those factors contributing to the injuries of the driver's foot/ankle. This study examines real-world crash data between the years 1997-2009 with a focus on frontal crashes involving 1997 and later model year vehicles. The raw data count for between-rail crashes was 732, corresponding to 227,305 weighted, tow-away crashes.
Technical Paper

Frontal Air Bag Deployment in Side Crashes

1998-02-23
980910
NHTSA conducted seventy-six side impact FMVSS No. 214 compliance tests from 1994 through 1997. The compliance tests are nearly right angle side impacts with low longitudinal components of change of velocity (Δv). Frontal air bag deployments were found to have occurred for 34% of the driver bags and 32% of the front passenger bags in these compliance-tested passenger cars. In 1997, NHTSA began testing passenger cars 'in side impact in the New Car Assessment Program (NCAP). The NCAP crash tests are conducted at a higher speed than the compliance tests. The cars in the NCAP side impact tests also had low longitudinal components of Δv. Approximately 40% of the twenty-six passenger cars tested in the 1997 Side Impact NCAP had their frontal air bags deploy. Real world crash data were examined to determine if frontal air bags are deploying in right angle side impacts on the roads of the US.
Journal Article

Frontal Crash Protection in Pre-1998 Vehicles versus 1998 and Later Vehicles

2010-04-12
2010-01-0142
This investigation addresses and evaluates: (1) belted drivers in frontal crashes; (2) crashes divided into low, medium, and high severity; (3) air-bag-equipped passenger vehicles separated into either model years 1985 - 1997 (with airbags) or model years 1998 - 2008; (4) rate of Harm as a function of crash severity and vehicle model year; and (5) injury patterns associated with injured body regions and the involved physical components, by vehicle model year. Comparisons are made between the injury patterns related to drivers seated in vehicles manufactured before 1998 and those manufactured 1998 or later. The purpose of this comparative analysis is to establish how driver injury patterns may have changed as a result of the introduction of more recent safety belt technology, advanced airbags, or structural changes.
Technical Paper

Human Response to and Injury from Lateral Impact

1983-10-17
831634
Lateral impacts have been shown to produce a large portion of both serious and fatal injuries within the total automotive crash problem. These injuries are produced as a result of the rapid changes in velocity that an automobile occupant's body experiences during a crash. In an effort to understand the mechanisms of these injuries, an experimental program using human surrogates (cadavers) was initiated. Initial impact velocity and compliance of the lateral impacting surface were the primary test features that were controlled, while age of the test specimen was varied to assess its influence on the injury outcome. Instrumentation consisted of 24 accelerometer channels on the subjects along with contact forces measured on the wall both at the thoracic and pelvic level. The individual responses and resulting injuries sustained by 11 new subjects tested at the University of Heidelberg are presented in detail.
X