Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Application of Hydraulically Controlled Rear Mount to Mitigate Key on/off Requirement of Passenger Car

2024-01-16
2024-26-0210
Key on/off (KOKO) Vibration plays a vital role in the quality of NVH (Noise Vibration and Harshness) on a vehicle. A good KOKO experience on the vehicle is desirable for every customer. The vibration transfer to the vehicle can be refined either by reducing the source vibrations or improving isolation efficiency. For the engine mounting system of passenger cars, the mounts are an isolating element between the powertrain and receiver. Various noise, Vibration, and harshness criteria must be fulfilled by mounting system performance like driver seat rail vibration (DSR), tip-in/tip-out, judder performance, DSR at idle and Key on/off Vibration. Out of these requirements, in the paper, the investigation is done on KOKO improvement without affecting other NVH parameters related to mount performance. Higher damping is required to isolate Vibration generated during the Key-on event, and lower damping is required during the idle condition of the vehicle.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Automotive Buzz, Squeak and Rattle Attenuation Technique from Front Suspension Assembly in Passenger Car

2021-08-31
2021-01-1087
BSR noise is an important parameters for customer discomfort. According to a market survey, squeaks and rattles are the third most important customer concern in cars after six months of ownership. The high quality acoustic environment of a car, annoying noises like buzz, squeak, and rattle is related to various parameters such as material assembly, tolerance, aging, humidity, surface contact, and surface hardness. BSR is originated from frictional movement between two parts or from the impact between two parts. The rattle noise is caused when surfaces close to each other move perpendicular to each other due to insufficient attachments or insufficient structural strength. In our study, we have shown the impact of various front suspension component in front suspension assembly on BSR noise and also the method to detect and attenuate the same. A methodical analysis process is shown to identify the contributing part and resolve the BSR issue.
Technical Paper

Cavitation Noise Countermeasure Development Approach in Hydromount

2011-10-06
2011-28-0091
Hydromount plays an important role in isolating vibration during idling. To meet ideal NVH criteria, a properly tuned Hydromount is required otherwise there will be abnormal noise due to cavitation effect. Cavitation noise is such a noise which is very difficult to identify in initial vehicle development stage. The effects of cavitation in the Hydromount become increasingly important for noise and performance goals. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. Technique to detect cavitation in Hydromount is presented in this paper. The countermeasure technique concentrates on increasing the fluid flow rate betweens fluid chambers. The results for different design countermeasure performance have been measured and the performance is compared in the vehicle. The results of vehicle level tests show the same trends as bench test results.
Technical Paper

Diagnosis and Elimination of Vehicle Lateral Shake in Passenger Car through Modification of Driveshaft Joints and Engine Mount System

2019-01-09
2019-26-0214
Vehicle lateral shake during take-off is sensitively felt by customers when the vehicle is driven at a low speed under drive away acceleration. The take-off shudder is complained by customers during 1st and 2nd gear take off. Under an engine torque and half shaft angle, the drive-away shudder usually occurs during acceleration to a specific low speed at 1200 to 1600 engine rpm, which makes the vehicle shake severely. A thorough investigation with possible design optimization of mounting system, drive shaft joint and lubrication is done to reduce the lateral vibration. This paper focuses on a passenger car, the take-off shudder of which occurs at a speed between 20 km/h and 30 km/h. The test vehicle is a monocoque construction with front wheel drive east west engine. Vehicle lateral shake is observed during the low gear power train run up in Wide Open Throttle (WOT) condition.
Journal Article

Effect of Driveshaft Angle on Turning Noise in Electric Vehicles and Solution Development Approach

2021-04-06
2021-01-0982
Electric vehicles (EV’s) are very much noise, vibration and harshness (NVH) sensitive due to the absence of engine noise. The outline of this paper is based on vehicle level turning noise evaluation. The impact of the driveshaft angle in the frequency range of 1000-2000Hz. The level of noise while turning at driver and co-driver side is evaluated first. Then the possible countermeasure to address such noise issues are also discussed. The impact on the angular adjusted roller (AAR) joint and driveshaft angle is studied along with the impact on other parameters like powertrain mount stiffness, ground clearance and vehicle architecture.
Technical Paper

Engine Mount Stiffness Effect on Joint Integrity and Durability

2021-09-22
2021-26-0514
Powertrain mounts locations and stiffness in vehicle plays very important role in improving vehicle noise and vibration, which is caused by engine firing forces and road disturbances. Once locations are finalized, based on initial calculation and packaging then it is very much critical to play with mount stiffness to achieve required NVH level in vehicle. This paper describes the effect of mount stiffness on the bolted joint integrity. Stiffness fine tuning is done to improve vehicle level NVH and various iteration are done with change in stiffness values of A, B and C mounts. When stiffness specifications are finalized, it is recommended to acquire road load data on the finalized stiffness mount and check for bolted joint integrity since load signature is varying significantly on mount w.r.t stiffness change. If we change mount stiffness value from 128N/mm to 98N/mm, then loads on particular mount is getting increased from 4.5KN to 6.5KN in one of the track testing.
Technical Paper

Engine Mount Stopper Design Techniques to Balance Vehicle Level Buzz, Squeak, Rattle and Durability

2020-04-14
2020-01-0401
In the highly competitive global automotive market and with the taste of customer becoming more refined, the need to develop high quality products and achieve product excellence in all areas to obtain market leadership is critical. Buzz, squeak and rattle (BSR) is the automotive industry term for the audible engineering challenges faced by all vehicle and component engineers. Minimizing BSR is of paramount importance when designing vehicle components and whole vehicle assemblies. Focus on BSR issues for an automobile interior component design have rapidly increased due to customer’s expectation for high quality vehicles. Also, due to advances in the reduction of vehicle interior and exterior noise, engine mounts have recently been brought to the forefront to meet the vehicle interior sound level targets. Engine mounts serve two principal functions in a vehicle, vibration isolation and engine support.
Technical Paper

Impact of Powertrain Dimensional Variation on Buzz, Squeak and Rattle Noise for Cradle Type Electric Vehicle

2021-04-06
2021-01-0836
There are two types of EV (electric vehicle) currently in use, namely modified EV and dedicated EV. Generally, we use a modified EV in cost-sensitive markets where we can commonize platform between internal combustion engine (ICE) and EV vehicles. For modified EV, we use the cradle to support the powertrain components, which connects to the engine mount, which in turn attaches to extended members and subframe. The fabricated cradle has many welding components that cause dimensional variation at the rear-mount attachment point on gearbox, which creates a reduction in the dynamic envelops significantly. The decrease in clearance often results in BSR noise, which we have simulated in the rig as well as on rope track. On a rough road, this noise is predominant. This buzz, squeak and rattle (BSR) noise also results in Tip in/Tip out noise, which is quite uncomfortable for the customer during sudden acceleration and deceleration.
Technical Paper

Optimisation of Engine Mounting System for Reduction in Lateral Shake and Drive Away Shudder on Vehicle

2017-06-05
2017-01-1822
In this study we will be discussing two issues related to vibrations which effect car owners. The first one, called lateral shake, can be described as a lateral vibration felt by customer in low speed of around 1200rpm, when vehicle shakes severely in Y-direction. The vibration is significantly felt at the thighs of passengers. A 16DOF rigid body model is established to simulate the power train & body system. The second vibration issue, called drive away shudder (also known as clutch judder/chatter/shudder) is a vibration felt by customers at the time of marching off. The vibration is significantly felt at the time of clutch engagement as a shiver in vehicle. While the common solution of shudder is to optimize clutch friction & engagement, in this study solution has been provided by optimizing the power train mounting system. Clutch shudder is observed on a medium sized car when driven in the range of 10-20 Km/h.
Technical Paper

Optimization of Engine Mounting System for First Gear Launch Judder

2020-04-14
2020-01-0416
Normal engine mounting system is designed to carry loads of powertrain in all driving conditions and also isolate the vibrations of powertrain. Softer mounts are good for vibration isolation but it is not recommended to have softer mounts because durability will be affected adversely. Optimum stiffness needs to be finalized which will have balance between durability and performance. In addition to durability many performance parameters needs to be checked during the time of development. This study includes the development of engine mounting system for elimination of drive away judder in first gear. Maximum peak torque value for the drive-away event is in the range of 80Nm - 120Nm. In the worst case, this peak torque can reach to maximum 170Nm depending on maneuver, engine rpm is around 1100-1200. Steering wheel, instrument panel and whole vehicle cabin will vibrate for few seconds and then vehicle will run smoothly.
Technical Paper

Prediction of Seat Rail and Steering Wheel Vibration at Idle Using Crank Drive and 16-DOF ADAMS Model

2019-01-09
2019-26-0181
Due to the recent trend in auto industry to opt for higher power engines, causes increase in vibrations levels in the passenger’s compartment. This requires a better and comprehensive model to analyze vibrations from engine to seat and steering wheel much before the proto stage of development in the design stage itself. For this purpose, modelling is done in ADAMS multi dynamics and assuming the 16 degrees of freedom of the vehicle. Further, a crank drive model is developed to simulate engine excitation forces comprising unbalanced inertia forces and torque fluctuations and their effects seat rail and steering wheel vibration is derived. This tool is an attempt to predict such vibrations caused and assist in design enhancement and streamline the procedure.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Virtual Analysis of Engine Mount Stiffness Tuning for Better NVH Performance

2021-08-31
2021-01-1026
If we see from the past and now competition in automotive industry increased tremendously and every car manufacturer are bringing up there innovations into the market and giving a lot of options to the customers to choose and the customer experience as well as satisfaction has become one of the main driver of success for the company. In today’s world of automotive design virtual analysis is playing a crucial role in the design and development. There are software’s that are available in market to simulate practical conditions digitally. Here we are mainly focused on effect of change in engine mount stiffness on acceleration at driver seat rail point using ADAMS. Which facilitates reduction of design of experiments and finalizing optimized stiffness values for engine mounts for engine idle vibration refinement point of view. ADAMS is mechanical system analysis software where we can simulate the dynamic behavior and distribution of loads throughout the system.
Technical Paper

Virtual Analysis of Engine Mount Stiffness and Stopper Gap Tuning for Better NVH Performance

2017-01-10
2017-26-0196
Key on/off Vibrations plays an important role in the quality of NVH on a vehicle. Hence having a good KOKO in the vehicle is desirable by every OEM. The vibration transfer to the vehicle can be refined by either reducing the source vibrations or improving isolation. In this study, critical factors affecting KOKO vibration has been identified. Focus has been given on improving the KOKO by change in mounting system stiffness & stopper gap, and assuming other parameters as constant. The study highlights a new simulation approach using ADAMS View to help run a DOE for solving KOKO issue on vehicle. The contribution of C mount stiffness and stopper gap is shown through simulation results. The correlation between simulation & test results has been established by measuring rigid body modes and KOKO vibration on vehicle for a set of mount configuration. Test results show significant KOKO improvement with the mount configuration optimized through simulation.
X