Refine Your Search

Topic

Search Results

Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

A Study of Jackknife Stability of Class VIII Vehicles with Multiple Trailers with ABS Disc/Drum Brakes

2004-03-08
2004-01-1741
This study investigated the jackknife stability of Class VIII double tractor-trailer combination vehicles that had mixed braking configurations between the tractor and trailers and dolly (e.g. ECBS disc brakes on the tractor and pneumatic drum brakes on the trailers and dolly). Brake-in-turn maneuvers were performed with varying vehicle loads and surface conditions. Conditions with ABS ON for the entire vehicle (and select-high control algorithm on the trailers and dolly) found that instabilities (i.e. lane excursions and/or jackknifes) were exhibited under conditions when the surface friction coefficient was 0.3. It was demonstrated that these instabilities could be avoided while utilizing a select-low control algorithm on the trailers and dolly. Simulation results with the ABS OFF for the tractor showed that a tractor equipped with disc brakes had greater jackknife stability.
Technical Paper

A Validation Study of Vehicle Dynamics Simulations for Heavy Truck Handling Maneuvers

2001-03-05
2001-01-0139
This paper deals with the ongoing efforts at The Vehicle Research and Test Center (VRTC) in East Liberty, Ohio in promoting the safe operation of heavy trucks. The associated research evaluated two vehicle dynamics simulations for their accuracy in predicting tractor-trailer handling metrics. The goals of the research were threefold: 1. Establish a generic “benchmark” parametric data set for the three-axle truck/two-axle trailer vehicle 2. Demonstrate the accuracy of experimental data that was collected for the tractor-trailer vehicle of this study 3. Demonstrate the accuracy of two vehicle simulations by comparing their predicted responses to experimentally observed vehicle responses and metrics.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Advancements in Tire Modeling Through Implementation of Load and Speed Dependent Coefficients

2005-11-01
2005-01-3543
An existing tire model was investigated for additional normal load-dependent characteristics to improve the large truck simulations developed by the National Highway Traffic Safety Administration (NHTSA) for the National Advanced Driving Simulator (NADS). Of the existing tire model coefficients, plysteer, lateral friction decay, aligning torque stiffness and normalized longitudinal stiffness were investigated. The findings of the investigation led to improvements in the tire model. The improved model was then applied to TruckSim to compare with the TruckSim table lookup tire model and test data. Additionally, speed-dependent properties for the NADS tire model were investigated (using data from a light truck tire).
Technical Paper

Air Disc and S-Cam Brake Stopping Performance Comparison for Class 8 Tractor and Trailer Combinations

2005-11-01
2005-01-3614
In an effort to reduce the dry stopping distance required for heavy trucks, it is imperative to increase the effectiveness of the foundation brake systems. Where brakes are torque limited, increasing the brake output can be obtained by increasing brake size, chamber size, slack length, and friction of the braking materials. Looking just at the aspect of foundation brakes, the majority of current tractor and trailer brakes are of the S-Cam and Drum type. Two commercially available alternatives that produce higher output are Air Disc brakes and larger sized S-Cam brakes. Using one type, or a combination of these brakes (discs and drums on different axles) warrants a comparative study. The goal is to improve the effectiveness of the brake system, while maintaining or improving upon vehicle stability during braking. NHTSA's Vehicle Research and Test Center recently completed a brake test study of the effectiveness and stability characteristics of tractor and trailer combinations.
Technical Paper

Analysis of Motorcycle Braking Performance and Associated Braking Marks

2012-04-16
2012-01-0610
This paper presents and analyzes braking test data and braking marks for a sport, sport-touring, and cruiser type motorcycle. The best-effort braking tests were performed using three motorcycles, three riders, and three initial speeds. All tests were performed on dry asphalt, with the exception of one set of runs for a sport touring motorcycle on wet asphalt. Three braking strategies were used; front-brake-only, rear-brake-only, and front-and-rear brakes used together. From these data, engineers can evaluate the following effects on braking performance: rider, speed, pavement condition, braking strategy, and motorcycle type. This paper should also serve to assist the vehicle accident reconstructionist in complementing the existing data on motorcycle braking performance.
Journal Article

Application of Air Brake Performance Relationships in Accident Reconstruction and Their Correlation to Real Vehicle Performance

2012-04-16
2012-01-0609
This research paper builds onto the wealth of technical information that has been published in the past by engineers such as Flick, Radlinski, and Heusser. For this paper, the pushrod force versus chamber pressure data published by Heusser are supplemented with data taken from brake chamber types not reported on by Heusser in 1991. The utility of Heusser's braking force relationships is explored and discussed. Finally, a straightforward and robust method for calculating truck braking performance, based on the brake stroke measurements and published heavy truck braking test results, is introduced and compared to full-scale vehicle test data.
Technical Paper

Automated Steering Controller for Vehicle Testing

2007-08-05
2007-01-3647
Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Journal Article

Braking Behavior of Truck Drivers in Crash Imminent Scenarios

2014-09-30
2014-01-2380
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
Technical Paper

Braking of Commercial Vehicles Equipped with Air-Disc Brakes from High Speed - Effects on Stopping Distance

2005-04-11
2005-01-0397
Due to increased speed limits at the state level, NHTSA has pursued additional testing of heavy trucks at higher test maneuver entry speeds. Test results from three vehicles, a Class 7 school bus, a Class 8 truck tractor and a Class 8 straight-truck are presented here. Results are discussed for full treadle straight-ahead stops from 60, 70 and 75 mph. Each vehicle was tested with two different brake configurations. As expected, higher entry speeds resulted in increased stopping distances. Causes for increased stopping distances are briefly discussed. Comparisons show that vehicles in the hybrid configuration (air-disc brakes on steer axle and S-cam brakes on drive axle(s)) had superior stopping performance to the vehicles equipped with traditional S-cam brakes. The vehicles in the hybrid configuration were less susceptible to increased stopping distances from higher entry speeds.
Technical Paper

Coefficients of Restitution for Low and Moderate Speed Impacts with Non-Standard Impact Configurations

2001-03-05
2001-01-0891
There have been a number of papers written about the dynamic effects of low speed front to rear impacts between motor vehicles during the last several years. This has been an important issue in the field of accident analysis and reconstruction because of the frequency with which the accidents occur and the costs of injuries allegedly associated with them. Several of these papers have discussed the importance of the coefficient of restitution in the accelerations and speed changes that the vehicles undergo in such impacts. These discussions often include data showing the measured restitution for impacts involving various bumper types and closing speeds. However, in most of these studies, the impacts are controlled so that direct bumper to bumper impacts occur. This paper will present the results of several rear impact tests with non-standard impact configurations.
Technical Paper

Comparison of ABS Configurations and Their Effects on Stopping Performance and Stability for a Class 8 Straight-Truck

2005-11-01
2005-01-3610
Direct vehicle performance comparisons were made between a full 6s/6m and a simpler 4s/4m system, as applied to a 6x4 Class 8 straight truck having a walking-beam rear suspension design. The 4s/4m system was run in both intermediate-axle control and trailing axle-control configurations. The systems were compared with modern air-disc brakes on the vehicle The systems were compared at LLVW (unladen) and GVWR (fully loaded) for high speed stopping performance and stability on a high-μ surface and a wetted split-μ surface, as well as Brake-in-Curve stability on a wetted low-μ 500-ft radius turn. In this paper, stopping distances are statistically compared to quantify effects of the various ABS control strategies on dry and wet stopping efficiency. In addition, newer techniques of using wheel-slip histograms generated from in-stop data are used to compare more detailed system behavior and predict their effects on vehicle stability under braking.
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Technical Paper

Comparison of Heavy Truck Foundation Brake Performance Measured with an Inertia Brake Dynamometer and Analyses of Brake Output Responses to Dynamic Pressure Inputs

2005-11-01
2005-01-3611
In support of NHTSA's studies of heavy truck brake types and their effects on vehicle stopping performance and stability, the NHTSA Vehicle Research and Test Center (VRTC) has evaluated four foundation brake types on their Greening Brake Dynamometer. Several sample assemblies of each type of brake were tested to better understand variability. Braking tests were run under the “Laboratory Test Procedure for FMVSS 121D Air Brake Systems - Dynamometer” (TP- 121D-01) procedures. Afterward, the test scope was expanded to include higher speeds and higher severity conditions than those specified Test Procedure. This paper reports on the differences in braking effectiveness between two traditional S-Cam air brake types and two recently introduced Air Disc brake types. Burnish procedure trends are briefly discussed and compared. Responses of the pneumatic brakes to both constant-pressure and dynamic inputs are also compared and discussed.
Journal Article

Design and Operation of a Brake and Throttle Robot

2009-04-20
2009-01-0429
This paper describes the design and implementation of the SEA, Ltd. Brake and Throttle Robot (BTR). Presented are the criteria used in the initial design and the development and testing of the BTR, as well as some test results achieved with the device. The BTR is designed for use in automobiles and light trucks. It is based on a servomotor driven ballscrew, which in turn operates either the brake or accelerator. It is easily portable from one vehicle to another and compact enough to fit even smaller vehicles. The BTR is light enough so as to have minimal effect on the measurement of vehicle parameters. The BTR is designed for use as a stand-alone unit or as part of a larger control system such as the Automated Test Driver (ATD) yet allows for the use of a test driver for safety, as well as test selection, initiation, and monitoring. Installation in a vehicle will be described, as well as electronic components that support the BTR.
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Development and Verification of Suspension Parameters for The Ohio State Buckeye Bullet 2 Land Speed Vehicle

2007-04-16
2007-01-0814
The Buckeye Bullet set domestic as well as international speed records for electric vehicles in 2004. The next generation of land speed vehicle from Ohio State called the Buckeye Bullet 2 (henceforth the BB2) will again challenge and hopefully achieve several new speed records. The Buckeye Bullet suspension worked relatively well but was found to not be quite optimal for the vehicle. The purpose of the work outlined here was to develop a new front and rear suspension for the BB2 that would be an improvement over the suspension of the original Bullet. Previous to the start of this work part of the suspension had already been designed in the form of an upright/control arm setup. This paper works on taking the suspension to completion from this point of design. Work done includes developing the final design, determining suspension parameters, building an ADAMS model, and testing the ADAMS model.
Journal Article

Development of a Roll Stability Control Model for a Tractor Trailer Vehicle

2009-04-20
2009-01-0451
Heavy trucks are involved in many accidents every year and Electronic Stability Control (ESC) is viewed as a means to help mitigate this problem. ESC systems are designed to reduce the incidence of single vehicle loss of control, which might lead to rollover or jackknife. As the working details and control strategies of commercially available ESC systems are proprietary, a generic model of an ESC system that mimics the basic logical functionality of commercial systems was developed. This paper deals with the study of the working of a commercial ESC system equipped on an actual tractor trailer vehicle. The particular ESC system found on the test vehicle contained both roll stability control (RSC) and yaw stability control (YSC) features. This work focused on the development of a reliable RSC software model, and the integration of it into a full vehicle simulation (TruckSim) of a heavy truck.
Technical Paper

Effects of ABS Controller Parameters on Heavy Truck Model Braking Performance

2006-10-31
2006-01-3482
This paper covers research conducted at the National Highway Traffic Safety Administration's Vehicle Research and Test Center (VRTC) examining the performance of semitrailer anti-lock braking systems (ABS). For this study, a vehicle dynamics model was constructed for the combination of a 4×2 tractor and a 48-foot trailer, using TruckSim. ABS models for the tractor and trailer, as well as brake dynamics and surface friction models, were created in Simulink so that the effect of varying ABS controller parameters and configurations on semitrailer braking performance could be studied under extreme braking maneuvers. The longitudinal and lateral performances of this tractor-trailer model were examined for a variety of different trailer ABS controller models, including the 2s1m, 4s2m, and 4s4m configurations. Also, alternative controllers of the same configuration were studied by varying the parameters of the 2s1m controller.
X