Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Detailed Reaction Kinetics-Based Calculation Tool for Internal Combustion Engine-Related Ignition Processes

2022-06-07
2022-01-5050
Ignition delay times are major information needed to allow the simulation of auto-ignition and knocking combustion in internal combustion engines (ICEs). Due to their variance over changing boundary conditions (BC) and limitations of measurement processes, a common way to obtain them is via reaction kinetic simulations. To facilitate and accelerate the simulation process with varying operating conditions and gas composition definitions, an efficient tool that uses Cantera’s Python interface has been created. It allows the end-user to easily calculate the ignition delay data needed for engine simulation without the necessity for in-depth knowledge of the underlying processes. All calculations are based on the creation of a homogeneously mixed gaseous mixture corresponding to engine-based environmental conditions. Depending on the desired fuel, oxidizer, temperature, pressure, water, and exhaust gas recirculation (EGR) rate, the resulting reactant composition is computed.
Journal Article

A Feed-Forward Approach for the Real-Time Estimation and Control of MFB50 and SOI In Diesel Engines

2014-05-05
2014-01-9046
Feed-forward low-throughput models have been developed to predict MFB50 and to control SOI in order to achieve a specific MFB50 target for diesel engines. The models have been assessed on a GMPT-E Euro 5 diesel engine, installed at the dynamic test bench at ICEAL-PT (Internal Combustion Engine Advanced Laboratory at the Politecnico di Torino) and applied to both steady state and transient engine operating conditions. MFB50 indicates the crank angle at which 50% of the fuel mass fraction has burned, and is currently used extensively in control algorithms to optimize combustion phasing in diesel engines in real-time. MFB50 is generally used in closed-loop combustion control applications, where it is calculated by the engine control unit, cycle-by-cycle and cylinder by-cylinder, on the basis of the measured in-cylinder pressure trace, and is adjusted in order to reduce the fuel consumption, combustion noise and engine-out emissions.
Technical Paper

A Hydrodynamic Contact Algorithm

2001-09-24
2001-01-3596
Today, mechanical systems such as the piston groups of internal combustion engines are simulated using Multiple Body-System (MBS) - approaches. However, the use of these models is restricted to a few problems as their adaptability is limited. The simulation of mechanical systems only by means of finite elements shows great promise for the future. In order to consider lubrication effects between two touching bodies of a mechanical system, a hydrodynamic contact algorithm (HCA) for finite element (FE) applications was developed. This paper discusses the technical background and first results for the simulation of a piston group using this new approach.
Technical Paper

A Model for a Fast Prediction of the In-Cylinder Residual Gas Mass

2004-10-25
2004-01-3053
The presented results are part of a research project to create a universal residual gas fraction model. It is supported by the „Forschungsvereinigung Verbrennungs-kraftmaschinen e.V. (FVV)”. In the research project an universal formula has been developed which allows the determination of the residual gas fraction in allkind of IC engines. The formula is valid for naturally aspirated engine, turbo and super charged, variable valve timing and fully variable valve trains, as well. The formula (constant approach) developed during the project is based on variables like time averaged intake and exhaust pressure, exhaust temperature and geometric engine data which were measured on the test bench. As a result, online and real time calculation is possible already while the engine is running. This implies that the formula can be used within the engine control unit for control purposes.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Journal Article

A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion

2023-04-11
2023-01-0184
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures.
Technical Paper

A Quasi-Dimensional Charge Motion and Turbulence Model for Diesel Engines with a Fully Variable Valve Train

2018-04-03
2018-01-0165
With the increasingly strict emission regulations and economic demands, variable valve trains are gaining in importance in Diesel engines. A valve control strategy has a great impact on the in-cylinder charge motions, turbulence level, thus also on the combustion and emission formation. In order to predict in-cylinder charge motions and turbulence properties for a working process calculation, a zero−/quasi-dimensional flow model is developed for the Diesel engines with a fully variable valve train. For the purpose of better understanding the in-cylinder flow phenomena, detailed 3D CFD simulations of intake and compression strokes are performed at different operating conditions with various piston configurations. In the course of model development, global in-cylinder charge motions are assigned to idealized flow fields. Among them, swirl flow is characterized by an engine swirl number that is determined by both developments of the swirl angular momentum and the moment of inertia.
Technical Paper

A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck

2018-09-10
2018-01-1779
As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from automobile industry in recent years. The most attractive concept of ORC-based WHR system is the conversion of the thermal energy of exhaust gas recirculation (EGR) and exhaust gas from Tailpipe (EGT) to kinetic energy which is provided to the engine crankshaft. Due to a shift of the operating point of the engine by applying WHR system, the efficiency of the overall system increases and the fuel consumption reduces respectively. However, the integration of WHR system in truck is challenging by using engine cooling system as heat sink for Rankine cycle. The coolant mass flow rate influences strongly on the exhaust gas bypass which ensures a defined subcooling after condenser to avoid cavitation of pump.
Technical Paper

A Simulative Study for Post Oxidation During Scavenging on Turbo Charged SI Engines

2018-04-03
2018-01-0853
Fulfilling exhaust emissions regulations and meet customer performance needs mainly drive the current engine development. Turbocharging system plays a key role for that. Currently turbocharging should provide highest engine power density at high engine speed by also allowing a very responsive performance at low end. This represents a trade-off in turbocharger development. A large scaled turbine allows having moderate exhaust gas back pressure for peak power region, but leading to loss of torque in low engine speed. In the last years of engine development scavenging helped to get away a bit from this trade-off as it increases the turbine mass flow and also reduces cylinder internal residual gas at low engine speed. The mostly in-use lean strategy runs air fuel ratios of closed to stoichiometric mixture in cylinder and global (pre catalyst) of λ = 1.05 to l = 1.3. This will be out of the narrow air fuel ratio band of λ = 1 to ensure NOx conversion in the 3-way-catalyst.
Technical Paper

An Investigation of Sub-Synchronous Oscillations in Exhaust Gas Turbochargers

2015-09-06
2015-24-2531
Due to the demands for today's passenger cars regarding fuel consumption and emissions, exhaust turbo charging has become a fundamental step in achieving these goals. Especially in upper and middle class vehicles it is also necessary to consider the noise comfort. Today, floating bushings are mainly used as radial bearings in turbochargers. In the conventional operating range of the turbocharger dynamic instability occurs in the lubrication films of the bearings. This instability is transferred by structure-borne noise into audible airborne sound and known as constant tone phenomenon. This phenomenon is not the major contributor of the engine noise but its tonal character is very unpleasant. In order to gain a more detailed understanding about the origin of this phenomenon, displacement sensors have been applied to the compressor- and the turbine-side of the rotor, to be able to determine the displacement path.
Journal Article

Analysis of Combustion and Emissions in a EURO V Diesel Engine by Means of a Refined Quasi-Dimensional Multizone Diagnostic Model

2012-04-16
2012-01-1066
A quasi-dimensional multizone combustion model, that was previously developed by the authors, has been refined and applied for the analysis of combustion and emission formation in a EURO V diesel engine equipped with a piezo indirect-acting injection system. The model is based on the integration of the predictive non-stationary variable-profile 1D spray model recently presented by Musculus and Kattke, with a diagnostic multizone thermodynamic model specifically developed by the authors. The multizone approach has been developed starting from the Dec conceptual scheme, and is based on the identification of several homogeneous zones in the combustion chamber, to which mass and energy conservation laws have been applied: an unburned gas zone, made up of air, EGR (Exhaust Gas Recirculation) and residual gas, several fuel/unburned gas mixture zones, premixed combustion burned gas zones and diffusive combustion burned gas zones.
Technical Paper

Analysis of SI and HCCI Combustion in a Two-Stroke Opposed-Piston Free-Piston Engine

2017-11-05
2017-32-0037
The German Aerospace Center (DLR) is developing a free-piston engine as an innovative internal combustion engine for the generation of electrical power. The arrangement of the Free Piston Linear Generator (FPLG) in opposed-piston design consists of two piston units oscillating freely, thereby alternately compressing the common combustion chamber in the center of the unit and gas springs on either side. Linear alternators convert the kinetic energy of the moving pistons into electric energy. Since the pistons are not mechanically coupled to a crank train, the bottom and top dead centers of the piston movement can be varied during operation e.g. to adjust the compression ratio. Utilizing these degrees of freedom, the present paper deals with the analysis of different combustion processes in a port scavenged opposed-piston combustion chamber prototype.
Journal Article

Assessment of a New Quasi-Dimensional Multizone Combustion Model for the Spray and Soot Formation Analysis in an Optical Single Cylinder Diesel Engine

2013-09-08
2013-24-0044
An innovative quasi-dimensional multizone combustion model for the spray formation, combustion and emission formation analysis in DI diesel engines was assessed and applied to an optical single cylinder engine. The model, which has been recently presented by the authors, integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model. The 1D spray model is capable of predicting the equivalence ratio of the fuel during the mixing process, as well as the spray penetration. The multizone approach is based on the application of the mass and energy conservation laws to several homogeneous zones identified in the combustion chamber. A specific submodel is also implemented to simulate the dilution of the burned gases. Soot formation is modeled by an expression which derives from Kitamura et al.'s results, in which an explicit dependence on the local equivalence ratio is considered.
Technical Paper

Data-Driven Modeling: An AI Toolchain for the Powertrain Development Process

2022-03-29
2022-01-0158
Predictive physical modeling is an established method used in the development process for automotive components and systems. While accurate predictions can be issued after tuning model parameters, long computation times are expected depending on the complexity of the model. As requirements for components and systems continuously increase, new optimization approaches are constantly being applied to solve multidimensional objectives and resulting conflicts optimally. Some of those approaches are deemed not feasible, as the computational times for required single predictions using conventional simulation models are too high. To address this issue it is proposed to use data-driven model such as neural networks. Previous efforts have failed due to sparse data sets and resulting poor predictive ability. This paper introduces an AI Toolchain used for data-driven modeling of combustion engine components. Two methods for generating scalable and fully variable datasets will be shown.
Technical Paper

Development Approach for the Investigation of Homogeneous Charge Compression Ignition in a Free-Piston Engine

2013-09-08
2013-24-0047
In this paper the development approach and the results of numerical and experimental investigations on homogeneous charge compression ignition in a free piston engine are presented. The Free Piston Linear Generator (FPLG) is a new type of internal combustion engine designed for the application in a hybrid electric vehicle. The highly integrated system consists of a two-stroke combustion unit, a linear generator, and a mass-variable gas spring. These three subsystems are arranged longitudinally in a double piston configuration. The system oscillates linearly between the combustion chamber and the gas spring, while electrical energy is extracted by the centrally arranged linear generator. The mass-variable gas spring is used as intermediate energy storage between the downstroke and upstroke. Due to this arrangement piston stroke and compression ratio are no longer determined by a mechanical system.
Journal Article

Development and Assessment of Pressure-Based and Model-Based Techniques for the MFB50 Control of a Euro VI 3.0L Diesel Engine

2017-03-28
2017-01-0794
Pressure-based and model-based techniques for the control of MFB50 (crank angle at which 50% of the fuel mass fraction has burned) have been developed, assessed and tested by means of rapid prototyping (RP) on a FPT F1C 3.0L Euro VI diesel engine. The pressure-based technique requires the utilization of a pressure transducer for each cylinder. The transducers are used to perform the instantaneous measurement of the in-cylinder pressure, in order to derive its corresponding burned mass fraction and the actual value of MFB50. It essentially consists of a closed-loop approach, which is based on a cycle-by-cycle and cylinder-to-cylinder correction of the start of injection of the main pulse (SOImain), in order to achieve the desired target of MFB50 for each cylinder.
Technical Paper

Development and Experimental Investigation of a Two-Stroke Opposed-Piston Free-Piston Engine

2016-11-08
2016-32-0046
The proposed paper deals with the development process and initial measurement results of an opposed-piston combustion engine for application in a Free-Piston Linear Generator (FPLG). The FPLG, which is being developed at the German Aerospace Center (DLR), is an innovative internal combustion engine for a fuel based electrical power supply. With its arrangement, the pistons freely oscillate between the compression chamber of the combustion unit and a gas spring with no mechanical coupling like a crank shaft. Linear alternators convert the kinetic energy of the moving pistons into electric energy. The virtual development of the novel combustion system is divided into two stages: On the one hand, the combustion system including e.g. a cylinder liner, pistons, cooling and lubrication concepts has to be developed.
Technical Paper

Development of a Fast, Predictive Burn Rate Model for Gasoline-HCCI

2016-04-05
2016-01-0569
Operating gasoline engines at part load in a so-called Gasoline-HCCI (gHCCI) combustion mode has shown promising results in terms of improved efficiency and reduced emissions. So far, research has primarily been focused on experimental investigations on the test bench, whereas fast, predictive burn rate models for use in process calculation have not been available. Such a phenomenological model is henceforth presented. It describes the current burn rate as the sum of a sequential self-ignition process on the one hand and a laminar-turbulent flame propagation on the other hand. The first mechanism is essentially represented by ignition delay calculation, in which the reaction rate is computed separately for some hundred groups of different temperatures based on the Arrhenius equation. Thermal inhomogeneity is described by a contaminated normal distribution which accounts for the influence of wall temperature on mixture close to the cylinder wall.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

Development of a Measurement Technology in Order to Determine the Dynamic Behavior of a Two-Stage Variable Connecting Rod

2018-04-15
2018-01-5002
Variation of the geometric compression ratio in gasoline combustion engines during engine operation enables potential for decreasing fuel consumption as well as emissions. One way to achieve a variable geometric compression ratio (VCR) is the application of a connecting rod with a variable effective length between its large end and its small end. Such a system consists of a connecting rod body with an eccentrically supported piston pin and a linkage which is supported hydraulically. Therefore, the connecting rod evolves from a solid part to a complex assembly of mechanical and hydraulic parts. In order to deploy this system in the most efficient way, an understanding of the physics and the dynamic behavior of the VCR connecting rod is necessary. This includes the mechanical subsystem as well as the hydraulic subsystem. This paper describes the experimental examination of a two stage variable connecting rod.
X