Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Feed-Forward Approach for the Real-Time Estimation and Control of MFB50 and SOI In Diesel Engines

2014-05-05
2014-01-9046
Feed-forward low-throughput models have been developed to predict MFB50 and to control SOI in order to achieve a specific MFB50 target for diesel engines. The models have been assessed on a GMPT-E Euro 5 diesel engine, installed at the dynamic test bench at ICEAL-PT (Internal Combustion Engine Advanced Laboratory at the Politecnico di Torino) and applied to both steady state and transient engine operating conditions. MFB50 indicates the crank angle at which 50% of the fuel mass fraction has burned, and is currently used extensively in control algorithms to optimize combustion phasing in diesel engines in real-time. MFB50 is generally used in closed-loop combustion control applications, where it is calculated by the engine control unit, cycle-by-cycle and cylinder by-cylinder, on the basis of the measured in-cylinder pressure trace, and is adjusted in order to reduce the fuel consumption, combustion noise and engine-out emissions.
Technical Paper

A Non-Linear Regression Technique to Estimate from Vibrational Engine Data the Instantaneous In-Cylinder Pressure Peak and Related Angular Position

2016-10-17
2016-01-2178
In this paper, a downsized twin-cylinder turbocharged spark-ignition engine is experimentally investigated at test-bench in order to verify the potential to estimate the peak pressure value and the related crank angle position, based on vibrational data acquired by an accelerometer sensor. Purpose of the activity is to provide the ECU of additional information to establish a closed-loop control of the spark timing, on a cycle-by-cycle basis. In this way, an optimal combustion phasing can be more properly accomplished in each engine operating condition. Engine behavior is firstly characterized in terms of average thermodynamic and performance parameters and cycle-by-cycle variations (CCVs) at high-load operation. In particular, both a spark advance and an A/F ratio sweep are actuated. In-cylinder pressure data are acquired by pressure sensors flush-mounted within the combustion chamber of both cylinders.
Technical Paper

An Experimental Characterization of Gasoline/Ozone/Air Mixtures in Spark Ignition Engines

2023-08-28
2023-24-0039
In this work, an ozone/air/gasoline mixture has been used as an alternative strategy to achieve a stable combustion in a spark ignition (SI) single cylinder PFI research engine. The air intake manifold has been modified to include four cells to produce ozone with different concentrations. In the research engine, various operating parameters have been monitored such as the in-cylinder pressure, temperature and composition of the exhaust gases, pressure and temperature of the mixture in the intake manifold, engine power and torque and specific fuel consumption. Experimental tests have been carried out under stoichiometric mixture conditions to observe the influence of ozone addition on the combustion process. The results show an advance and an increase of the in-cylinder pressure compared to the reference test-case, where a gasoline/air mixture is used. It is worth noting that, especially under stoichiometric condition, ozone concentration induces auto-ignition and knock.
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Journal Article

Analysis of Combustion and Emissions in a EURO V Diesel Engine by Means of a Refined Quasi-Dimensional Multizone Diagnostic Model

2012-04-16
2012-01-1066
A quasi-dimensional multizone combustion model, that was previously developed by the authors, has been refined and applied for the analysis of combustion and emission formation in a EURO V diesel engine equipped with a piezo indirect-acting injection system. The model is based on the integration of the predictive non-stationary variable-profile 1D spray model recently presented by Musculus and Kattke, with a diagnostic multizone thermodynamic model specifically developed by the authors. The multizone approach has been developed starting from the Dec conceptual scheme, and is based on the identification of several homogeneous zones in the combustion chamber, to which mass and energy conservation laws have been applied: an unburned gas zone, made up of air, EGR (Exhaust Gas Recirculation) and residual gas, several fuel/unburned gas mixture zones, premixed combustion burned gas zones and diffusive combustion burned gas zones.
Technical Paper

Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics

2019-04-02
2019-01-1165
In the present study, dual fuel mode is investigated in a single cylinder optical compression ignition (CI) research engine. Methane is injected in the intake manifold while the diesel is delivered via the standard injector directly into the engine. The aim is to study by non-intrusive diagnostics the effect of increasing methane concentration at constant injected diesel amount during the combustion evolution from start of combustion. IR imaging is applied in cycle resolved mode. Three filters are adopted to detect from injection to combustion phase with high spatial and temporal resolution: OD1.45 (3-5.5 μm), band pass 3.3 μm (hydrocarbons) and band pass 4.2 μm (CO2). Using the band pass IR imaging qualitative information about fuel-vapor distribution and ignition locations during low and high temperature combustion have been provided.
Technical Paper

Analysis of Dual Fuel Hydrogen/Diesel Combustion Varying Diesel and Hydrogen Injection Parameters in a Single Cylinder Research Engine

2024-04-09
2024-01-2363
In the perspective of a reduction of emissions and a rapid decarbonisation, especially for compression ignition engines, hydrogen plays a decisive role. The dual fuel technology is perfectly suited to the use of hydrogen, a fuel characterized by great energy potential. In fact, replacing, at the same energy content, the fossil fuel with a totally carbon free one, a significant reduction of the greenhouse gases, like carbon dioxide and total hydrocarbon, as well as of the particulate matter can be obtained. The dual fuel with indirect injection of gaseous fuel in the intake manifold, involves the problem of hydrogen autoignition. In order to avoid this difficulty, the optimal conditions for the injection of the incoming mixture into the cylinder were experimentally investigated. All combustion processes are carried out on a research engine with optical access. The engine speed has is set at 1500 rpm, while the EGR valve is deactivated.
Journal Article

Assessment of a New Quasi-Dimensional Multizone Combustion Model for the Spray and Soot Formation Analysis in an Optical Single Cylinder Diesel Engine

2013-09-08
2013-24-0044
An innovative quasi-dimensional multizone combustion model for the spray formation, combustion and emission formation analysis in DI diesel engines was assessed and applied to an optical single cylinder engine. The model, which has been recently presented by the authors, integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model. The 1D spray model is capable of predicting the equivalence ratio of the fuel during the mixing process, as well as the spray penetration. The multizone approach is based on the application of the mass and energy conservation laws to several homogeneous zones identified in the combustion chamber. A specific submodel is also implemented to simulate the dilution of the burned gases. Soot formation is modeled by an expression which derives from Kitamura et al.'s results, in which an explicit dependence on the local equivalence ratio is considered.
Journal Article

Butanol-Diesel Blend Spray Combustion Investigation by UV-Visible Flame Emission in a Prototype Single Cylinder Compression Ignition Engine

2015-09-06
2015-24-2435
The paper reports the results of an experimental investigation carried out in a prototype optically accessible compression ignition engine fuelled with different blends of commercial diesel and n-butanol. Thermodynamic analysis and exhaust gas measurements were supported by optical investigations performed through a wide optical access to the combustion chamber. UV-visible digital imaging and 2D chemiluminescence were applied to characterize the combustion process in terms of spatial and temporal occurrence of auto-ignition, flame propagation, soot and OH evolution. The paper illustrates the results of the spray combustion for diesel and n-butanol-diesel blends at 20% and 40% volume fraction, exploring a single and double injection strategy (pilot+main) from a common rail multi-jet injection system. Tests were performed setting a pilot+main strategy with a fixed dwell time and different starts of injection.
Technical Paper

CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode

2022-08-30
2022-01-1056
Nowadays, the stricter regulations in terms of emissions have limited the use of diesel engines on urban roads. On the contrary, for marine and off-road applications the diesel engine still represents the most feasible solution for work production. In the last decades, dual fuel operation with methane supply has been widely investigated. Starting from previous studies on a research engine, where diesel-methane dual fuel combustion has been deepened both experimentally and numerically with the aid of a CFD code, the authors implemented and tested a kinetic mechanism. It is obtained from the combination of the well-established GRIMECH 3.0 and a detailed scheme for a diesel surrogate oxidation. Moreover, the Autoignition-Induced Flame Propagation model, included in the ANSYS Forte® software, is applied because it can be considered the most appropriate model to describe dual fuel combustion.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
Technical Paper

CFD Analysis of the Injection Strategy of a Dual Fuel Compression Ignition Engine Supplied with Hydrogen

2023-08-28
2023-24-0064
Although in the latest years the use of compression ignition engines has been a thread of discussion in the automotive field, it is possible to affirm that it still will be a fundamental producer of mechanical power in other sectors, such as naval and off-road applications. However, the necessity of reducing emissions requires to keep on studying new solutions for this kind of engine. Dual fuel combustion concept with methane has demonstrated to be effective in preserving the performance of the original engine and reducing soot, but issues related to the low flame speed forced researcher to find an alternative fuel at low impact of CO2. Hydrogen, thanks to its chemical and physical properties, can be a perfect candidate to ensure a good level of combustion efficiency; however, this is possible only with a proper management of the in-cylinder mixture ignition by means of a pilot injection, preventing uncontrolled autoignition events as well.
Technical Paper

Characterization of Alcohol Sprays from Multi-Hole Injector for DISI Engines through PIV Technique

2015-04-14
2015-01-0927
The use of alcohols as alternative to gasoline for fuelling spark-ignition (SI) engines is widespread. Growing interest is paid for n-butanol because of its characteristics that are similar to gasoline. If compared with other alcohols, n-butanol has higher energy content and miscibility with gasoline, lower hygroscope and corrosive properties making it an attractive solution for gasoline replacement. Even if several studies have been conduced to characterize the n-butanol combustion within Spark Ignition engines, few data are available on atomization and spray behavior. This paper reports the results of an experimental investigation to characterize the velocity vector field of two fuel-sprays injected by a 6-hole nozzle for Direct Injection Spark Ignition (DISI) engine. 2D Mie-scattering and Particle Image Velocimetry (PIV) measurements were carried out in an optically accessible vessel at ambient temperature and pressure.
Technical Paper

Characterization of PCCI Combustion in a Single Cylinder CI Engine Fuelled with RME and Bio-Ethanol

2013-04-08
2013-01-1672
This paper reports experiments on a single-cylinder direct-injection compression ignition engine operating in premixed charge compression ignition (PCCI) combustion mode. The engine was fuelled with pure rapeseed methyl ester (RME) and bio-ethanol. RME was injected in the combustion chamber by common rail (CR) injection system at 800 bar and bio-ethanol in the intake manifold by commercial port fuel injection system at 3.5 bar. The effects of different percentage of bio-ethanol were studied by means of both the in-cylinder heat release analysis and the high-speed UV-visible chemiluminescence visualization. The pollutant formation and exhaust emissions of the engine operating in dual fuel mode were evaluated. The increase of the bio-ethanol content improved the brake thermal efficiency slightly even if the brake fuel consumption increased. However, the choice to inject two biofuels decreases both the smoke opacity and NOx concentration.
Technical Paper

Coking Effect of Different FN Nozzles on Injection and Combustion in an Optically Accessible Diesel Engine

2013-09-08
2013-24-0039
Interest on the issue of diesel injector nozzle deposits is rising in the last years due to its effects on engine performance. The alteration of nozzles geometry can cause a difference in fuel mass flow and influence smoke emission. Investigation on the effects of nozzle coking in a diesel injector has been the topic of this paper. The experiments have been carried out in a single cylinder optical engine operating in premixed mode. The head of a Euro 5 production engine has been mounted on an elongated cylinder and the production CR injection system has been used. A sapphire window has been set in the piston head in order to have visible access to phenomena occurring in the combustion chamber. Three injectors with decreasing flow number (FN) have been tested. Engine has been fed with commercial diesel fuel. High spatial and temporal resolution camera has been used for the acquisition of in-cylinder injection and combustion images.
Technical Paper

Combined CFD - Experimental Analysis of the In-Cylinder Combustion Phenomena in a Dual Fuel Optical Compression Ignition Engine

2021-09-05
2021-24-0012
Methane supply in diesel engines operating in dual fuel mode has demonstrated to be effective for the reduction of particulate matter and nitric oxides emissions from this type of engine. In particular, methane is injected into the intake manifold to form a premixed charge with air, while a reduced amount of diesel oil is still directly injected to ignite the mixture inside the cylinder. As a matter of fact, the liquid fuel burns following the usual diffusive combustion, so activating the gaseous fuel oxidation in a premixed flame. Clearly, the whole combustion process appears to be more complex to be described in a CFD simulation, mainly because it is not always possible to select in the 3-dimensional codes a different combustion model for each fuel and, also, because other issues arise from the interaction of the two fuels.
Technical Paper

Combustion Analysis in an Optical Diesel Engine Operating with Low Compression Ratio and Biodiesel Fuels

2010-04-12
2010-01-0865
In this paper we report how optical techniques were applied in the cylinder of an optically accessible engine equipped with latest-generation EURO V diesel engine head. The injection strategy with high percentage of EGR, characteristic of real engine operating point, was adopted. In particular, the combustion behavior at 1500 rpm\2 bar BMEP was investigated. Alternative diesel fuels were used. In particular, rapeseed methyl ester (RME) and gas to liquid (GTL) were selected as representative of 1st and 2nd generation alternative diesel fuel, respectively. Combustion analysis was carried out in the engine combustion chamber by means of visible digital imaging. These measurements helped to analyze the chemical and physical events occurring during the mixture preparation and the combustion development. Ultraviolet (UV) digital imaging was also performed and the presence of characteristic radical, like OH, in the various phases of combustion was detected as well.
Technical Paper

Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel

2015-09-06
2015-24-2461
In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.
Journal Article

Combustion Prediction by a Low-Throughput Model in Modern Diesel Engines

2011-04-12
2011-01-1410
A new predictive zero-dimensional low-throughput combustion model has been applied to both PCCI (Premixed Charge Compression Ignition) and conventional diesel engines to simulate HRR (Heat Release Rate) and in-cylinder pressure traces on the basis of the injection rate. The model enables one to estimate the injection rate profile by means of the injection parameters that are available from the engine ECU (Electronic Control Unit), i.e., SOI (Start Of main Injection), ET (Energizing Time), DT (Dwell Time) and injected fuel quantities, taking the injector NOD (Nozzle Opening Delay) and NCD (Nozzle Closure Delay) into account. An accumulated fuel mass approach has been applied to estimate Qch (released chemical energy), from which the main combustion parameters that are of interest for combustion control in IC engines, such as, SOC (Start Of Combustion), MFB50 (50% of Mass Fraction Burned) have been derived.
Journal Article

Development and Assessment of Pressure-Based and Model-Based Techniques for the MFB50 Control of a Euro VI 3.0L Diesel Engine

2017-03-28
2017-01-0794
Pressure-based and model-based techniques for the control of MFB50 (crank angle at which 50% of the fuel mass fraction has burned) have been developed, assessed and tested by means of rapid prototyping (RP) on a FPT F1C 3.0L Euro VI diesel engine. The pressure-based technique requires the utilization of a pressure transducer for each cylinder. The transducers are used to perform the instantaneous measurement of the in-cylinder pressure, in order to derive its corresponding burned mass fraction and the actual value of MFB50. It essentially consists of a closed-loop approach, which is based on a cycle-by-cycle and cylinder-to-cylinder correction of the start of injection of the main pulse (SOImain), in order to achieve the desired target of MFB50 for each cylinder.
X