Refine Your Search

Topic

Search Results

Standard

A DYNAMIC TEST METHOD FOR DETERMINING THE DEGREE OF CLEANLINESS OF THE DOWNSTREAM SIDE OF FILTER ELEMENTS

1996-05-01
HISTORICAL
ARP599
This test method describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure are intended to be used only for evaluation of the effectiveness of various cleaning treatments, or cleanliness of element as received from manufacturers. The data obtained by this procedure do not necessarily indicate, qualitatively or quantitatively, the contamination which may be released by a filter element into a fluid during service use. Because of the wide variety of conditions which may exist in service applications, it is recommended that the user design and conduct his own particular service performance test. (See paragraph 10.1).
Standard

Aerospace - Chlorinated Solvent Contamination of MIL-H-5606/MIL-H-83282 Vehicle Hydraulic Systems

2002-08-08
HISTORICAL
AIR4713
Although there is controversy regarding the chemical form of chlorine and its relation to harmful effects in the hydraulic fluid (i.e., chloride ions versus organic chloro-compounds versus total chlorine in all forms), it is generally agreed that total chlorine content should be measured and controlled. In the near future, the ban on the manufacture of chlorinated solvents, out of concern for depletion of the ozone layer, may in itself diminish or eliminate chlorine contamination related aircraft malfunctions. It is generally accepted that hydraulic fluid contamination should be held to a minimum under all conditions. The benefits of low contamination levels are improved performance, lower maintenance due to lower wear, corrosion and erosion, longer fluid life, longer component life, etc. Contaminants can be classified into two general types: those that are insoluble and those that are soluble in the hydraulic fluid.
Standard

Aerospace - Chlorinated Solvent Contamination of MIL-H-5606/MIL-H-83282 Vehicle Hydraulic Systems

2013-06-18
CURRENT
AIR4713A
Although there is controversy regarding the chemical form of chlorine and its relation to harmful effects in the hydraulic fluid (i.e., chloride ions versus organic chloro-compounds versus total chlorine in all forms), it is generally agreed that total chlorine content should be measured and controlled. In the near future, the ban on the manufacture of chlorinated solvents, out of concern for depletion of the ozone layer, may in itself diminish or eliminate chlorine contamination related aircraft malfunctions. It is generally accepted that hydraulic fluid contamination should be held to a minimum under all conditions. The benefits of low contamination levels are improved performance, lower maintenance due to lower wear, corrosion and erosion, longer fluid life, longer component life, etc. Contaminants can be classified into two general types: those that are insoluble and those that are soluble in the hydraulic fluid.
Standard

Aerospace - Dynamic Test Method for Determining the Relative Degree of Cleanliness of the Downstream Side of Filter Elements

2020-05-05
CURRENT
ARP599D
This SAE Aerospace Recommended Practice (ARP) describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure represent the particulate released from the tested filter element under the prevailing conditions of the test. The results may be used for comparative evaluation of the effectiveness of various cleaning methods or the cleanliness of elements after cleaning or as received from manufacturers.
Standard

DYNAMIC TEST METHOD FOR DETERMINING THE DEGREE OF CLEANLINESS OF THE DOWNSTREAM SIDE OF FILTER ELEMENTS

2011-08-10
HISTORICAL
ARP599A
This test method describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure represent the particulate release rate of the tested filter element under the prevailing conditions of the test and may be used for comparative evaluation of the effectiveness of various cleaning methods or cleanliness of elements as received from manufacturers. Because of the variety of conditions which may exist even under the provisions of this procedure, it is difficult to correlate data from one testing agency to another. The data obtained by this procedure do not necessarily indicate qualitatively or quantitatively, the contamination which may be released by a filter element into the operating fluid during service. When properly conducted, however, the procedure will show marked differences between various cleanliness levels of filter elements.
Standard

Degradation Limits of Hydrocarbon-Based Hydraulic Fluids, MIL-H-5606, MIL-H-6083, MIL-H-83282, and MIL-H-46170 Used in Hydraulic Test Stands

2001-03-01
HISTORICAL
AIR810C
This SAE Aerospace Information Report (AIR) presents data on normally accepted changes in physical properties and contamination levels for military hydraulic fluids used in hydraulic test stands. This information is of importance to all users of hydraulic test stands to assure the performance data obtained on these test stands for specific components will not be adversely affected by excessive changes in fluid properties or contamination levels. The data pertains to fluids conforming to specifications MIL-H-5606, MIL-H-83282, MIL-H-6063, and MIL-H-46170. The guidelines incorporated in the AIR are the general consensus values of knowledgeable professionals. However, the experience and judgement of engineers and operators responsible for the equipment must be relied upon to determine when the hydraulic fluid is to be replaced. This document is essentially a metric document with English units.
Standard

Degradation Limits of MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257 Hydraulic Fluids Used in Hydraulic Test Stands

2020-10-14
CURRENT
AIR810E
This SAE Aerospace Information Report (AIR) presents data on normally accepted changes in physical properties and contamination levels for MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257 hydraulic fluids used in hydraulic test stands. This information is of importance to all users of hydraulic test stands to assure the performance data obtained on these test stands for specific components will not be adversely affected by excessive changes in fluid properties or contamination levels.
Standard

FIRE RESISTANT PHOSPHATE ESTER HYDRAULIC FLUID FOR AIRCRAFT

1992-02-18
HISTORICAL
AS1241B
This document establishes the requirements for physical and chemical properties and the minimum tests to evaluate suitability of phosphate ester hydraulic fluids for use in aircraft systems where fire resistance is required. Additional tests may be specified by procuring agencies to demonstrate compliance with specific requirements.
Standard

Fire Resistant Phosphate Ester Hydraulic Fluid for Aircraft

1997-09-01
HISTORICAL
AS1241C
This document establishes the requirements for physical and chemical properties and the minimum tests to evaluate suitability of phosphate ester hydraulic fluids for use in aircraft systems where fire resistance is required. Additional tests may be specified by procuring agencies to demonstrate compliance with specific requirements.
Standard

HYDRAULIC FLUID CHARACTERISTICS

2011-08-10
HISTORICAL
AIR81
This report discusses the characteristics of hydraulic fluids and evaluates their importance, not only from the standpoint of fluid formulation, but also in their effect on aero-space hydraulic system design and the materials used in the components of the system. In some cases numerical parameter limits are suggested, but, in general, the effect of a parameter is the basic consideration. Not only must the characteristics of the fluid be considered in the design of a hydraulic system in which it is to be used, but also the characteristics of the system will affect the extent of the importance of the various characteristics of the fluid. In each individual system, as it employs a fluid, the characteristics of the fluid must be assessed with their immediate import and weighed in considering their effects on the system design requirements based upon the variables of system environment, function and basic design.
Standard

Importance of Physical and Chemical Properties of Aircraft Hydraulic Fluids

2011-02-08
HISTORICAL
AIR81C
This document discusses the relative merits of the physical and chemical properties of hydraulic fluids in relation to the aerospace hydraulic system design, and the related materials compatibility. The discussion in this report applies both to hydrocarbon and phosphate ester based aircraft hydraulic fluids. In some cases, numerical limits are suggested, but, in general, the significance and effect of a property is noted qualitatively.
Standard

Importance of Physical and Chemical Properties of Aircraft Hydraulic Fluids

2016-04-20
HISTORICAL
AIR81D
This document discusses the relative merits of the physical and chemical properties of hydraulic fluids in relation to the aerospace hydraulic system design, and the related materials compatibility. The discussion in this report applies both to hydrocarbon and phosphate ester based aircraft hydraulic fluids. In some cases, numerical limits are suggested, but, in general, the significance and effect of a property is noted qualitatively.
Standard

Importance of Physical and Chemical Properties of Aircraft Hydraulic Fluids

2019-10-02
CURRENT
AIR81E
This document discusses the relative merits of the physical and chemical properties of hydraulic fluids in relation to the aerospace hydraulic system design, and the related materials compatibility. The discussion in this report applies both to hydrocarbon and phosphate ester based aircraft hydraulic fluids. In some cases, numerical limits are suggested, but, in general, the significance and effect of a property is noted qualitatively.
Standard

LIQUID FILTER RATINGS

1968-05-31
HISTORICAL
AIR887
This AIR explains the meaning of "ABSOLUTE" and "NOMINAL" ratings which are used to describe liquid filter element physical characteristics. A set of standard filter ratings and methods of determination to further describe an element performance are also included. These data are only applicable to a system in which the system liquid wets the filter element.
X