Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An Experimental Investigation of Combustion, Emissions and Performance of a Diesel Fuelled HCCI Engine

2012-01-09
2012-28-0005
Homogeneous charge compression ignition (HCCI) is an advanced combustion concept that is developed as an alternative to diesel engines with higher thermal efficiency along with ultralow NOx and PM emissions. To study the performance of this novel technique, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode while other cylinder operates in conventional CI mode. The quality of homogeneous mixture of air and fuel is the key feature of HCCI combustion. Low volatility of diesel is a major hurdle in achieving HCCI combustion because it is difficult to make a homogeneous mixture of air and fuel. This problem is resolved by external mixture preparation technique in uses a dedicated diesel vaporizer with an electronic control system. All the injection parameters such as fuel quantity, fuel injection timing, injection delay etc., are controlled by the injection driver circuit.
Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Technical Paper

Application of a Wide Range Oxygen Sensor for the Misfire Detection

1999-05-03
1999-01-1485
A new concept of misfire detection in spark ignition engines using a wide-range oxygen sensor is introduced. A wide-range oxygen sensor, installed at the confluence point of the exhaust manifold, was adopted to measure the variation in oxygen concentration in case of a misfire. The signals of the wide-range oxygen sensor were characterized over the various engine-operating conditions in order to decide the monitoring parameters for the detection of the misfire and the corresponding faulty cylinder. The effect of the sensor position, the transient response characteristics of the sensor and the cyclic variation in the signal fluctuation were also investigated. Limited response time of a commercially available sensor barely allowed to observe misfire. It was found that a misfiring could be distinguished more clearly from normal combustion through the differentiation of the sensor response signal. The differentiated signal has twin peaks for a single misfiring in a cylinder.
Technical Paper

CI/PCCI Combustion Mode Switching of Diesohol Fuelled Production Engine

2017-03-28
2017-01-0738
Premixed charge compression ignition (PCCI) combustion is an advanced combustion technique, which has the potential to be operated by alternative fuels such as alcohols. PCCI combustion emits lower oxides of nitrogen (NOx) and particulate matter (PM) and results thermal efficiency similar to conventional compression ignition (CI) engines. Due to extremely high heat release rate (HRR), PCCI combustion cannot be used at higher engine loads, which make it difficult to be employed in production grade engines. This study focused on development of an advanced combustion engine, which can operate in both combustion modes such as CI combustion as well as PCCI combustion mode. This Hybrid combustion system was controlled by an open engine control unit (ECU), which varied the fuel injection parameters for mode switching between CI and PCCI combustion modes.
Journal Article

Characteristics of Turbocharger with TiAl Turbine Wheel in a Downsizing GDI Engine

2013-10-14
2013-01-2499
Steady and transient tests in a downsizing Gasoline Direct Injection (GDI) in-line 4 cylinders 2.0 liter engine were carried out to investigate characteristics of turbocharger with Titanium aluminide (TiAl) turbine wheel. The density of TiAl material is lower than Inconel 718 (Inconel) which is raw material for conventional turbine wheel. The objective of this study was to investigate the effect of light rotational inertia of turbine wheel on engine performance. Performance of TiAl turbine wheel turbocharger itself was also compared to that of Inconel turbine wheel turbocharger. Except for the turbine wheels, all experimental conditions were matched to be the same load and engine speed conditions. The compressor total-to-total pressure ratio of TiAl turbocharger was higher under part load condition due to higher turbocharger speed of TiAl turbocharger, which was led by lower rotational inertia of TiAl turbine wheel, while the engine performance was not much improved.
Technical Paper

Combustion Characteristics of Jatropha Oil Blends in a Transportation Engine

2008-04-14
2008-01-1383
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. However, several operational and durability problems of using straight vegetable oils in diesel engines are reported in the literature, caused by of their higher viscosity and low volatility compared to mineral diesel. In the present research, experiments were designed to study the effect of reducing Jatropha oil's viscosity by blending it with mineral diesel and thereby eliminating the effect of high viscosity and poor volatility on combustion characteristics of the engine. Experimental investigations have been carried out to examine the combustion characteristics of an indirect injection transportation diesel engine running with diesel, and jatropha oil blends with diesel.
Technical Paper

Combustion Characteristics of Rice Bran Oil Derived Biodiesel in a Transportation Diesel Engine

2005-10-23
2005-26-354
The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine and they would not require significant modification of existing engine hardware. Methyl ester of rice bran oil (ROME) is derived through transesterification process. Previous research has shown that ROME has comparable performance, lower bsfc in comparison to diesel. There was reduction in the emissions of CO, HC, and smoke but NOx emissions increased. Experimental investigations have been carried out to examine the combustion characteristics in a direct injection transportation diesel engine running with diesel, and 20% blend of rice bran methyl ester with diesel.
Technical Paper

Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine

2004-03-08
2004-01-0938
A diesel-fueled premixed charged compression ignition (PCCI) combustion technique using a two-stage injection strategy has been investigated in a single cylinder optical engine equipped with a common-rail fuel system. Although PCCI combustion has the advantages of reducing NOx and PM emissions, difficulties in vaporization of a diesel fuel and control of the combustion phase hinder the development of the PCCI engine. A two-stage injection strategy was applied to relieve these problems. The first injection, named as main injection, was an early direct injection of diesel fuel into the cylinder to achieve premixing with air. The second injection was a diesel injection of a small quantity (1.5 mm3) as an ignition promoter and combustion phase controller near TDC. Effects of injection pressure, injected fuel quantity and compression ratio were studied with variation of an intake air temperature.
Journal Article

Combustion Phenomena and Emissions in a Dual-Fuel Optical Engine Fueled with Diesel and Natural Gas

2021-09-21
2021-01-1175
The application of dual-fuel combustion in the freight transportation sectors has received considerable attention due to the capability of achieving higher fuel efficiency and less pollutant emissions than the conventional diesel engines. In this study, high-speed flame visualization was used to investigate the phenomena of natural gas/diesel dual-fuel combustion in a single-cylinder heavy-duty engine with optical access. To implement diverse fuel blending conditions, diesel injection timing and natural gas substitution ratio were varied under constant fuel energy input. A novel flame regime separation method was implemented based on color segmentation in HSV color space to characterize the spatial distributions of premixed and non-premixed flame regimes. Flame images for larger natural gas substitution showed a significant reduction in the non-premixed flame regime accompanied by flame propagation along the vaporized diesel sprays.
Technical Paper

Combustion and Emission Behavior of Ethanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

2008-01-09
2008-28-0064
The Homogeneous charge compression ignition (HCCI) is the third alternative for the combustion in the reciprocating engine. HCCI a hybrid of well-known spark ignition (SI) and compression ignition (CI) engine concepts and has potential of combining the best features of both. A two cylinder, four stroke, direct injection diesel engine was modified to operate one cylinder on the compression ignition by detonation of homogeneous mixture of ethanol and air. The homogeneous mixture of the charge is prepared by port injection of ethanol in the preheated Intake air. This study presents results of experimental investigations of HCCI combustion of ethanol at intake air temperature of 120°C and at different air-fuel ratios. In this paper, the combustion parameters, pressure time history, rate of pressure rise, rate of heat release, mean temperature history in the combustion chamber is analyzed and discussed.
Technical Paper

Comparative Evaluation of Turbochargers for High Horsepower Diesel-Electric Locomotives

2013-04-08
2013-01-0930
Indian Railways have a fleet of high-horsepower diesel-electric locomotives rated at 2310 kW. These high horsepower diesel-electric locomotives have evolved from original design of 1940 kW locomotives. Adoption of new design turbochargers was essential for this upgrading efforts and a series of new design turbochargers were evaluated on the engine test-bed before their use on the diesel locomotives. The objective was to increase engine power output, improve fuel efficiency and limit thermal loading. Test-bed evaluation of different turbochargers was carried out for comparing five different turbochargers. Each turbocharger had different size nozzle ring, diffuser, turbine blade assembly, impeller and inducer. The compressor maps of turbochargers were used to plot the engine load lines and to calculate surge margins. The tests involved measuring critical parameters for various combinations of engine speed and load for every turbocharger.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
Technical Paper

Development And Characterization Of Biodiesel From Non-Edible Vegetable Oils Of Indian Origin

2004-01-16
2004-28-0079
Increased environmental awareness and depletion of fossil fuel resources are driving industry to develop alternative fuels that are environmentally more acceptable. Vegetable oils are potential alternative fuels. Vegetable oils in India are produced from numerous oil-seed crops. While all vegetable oils have high energy content, most require some processing to ensure safe usage in internal combustion engines. Most detrimental properties of oils are its high viscosity, low volatility and polyunsaturated character. The most widely used method is to convert vegetable oils into biodiesel. Biodiesel fuels are primary esters, which are produced by transesterifcation of vegetable oils. Several vegetable oil esters have been investigated so far in different parts of the world and found suitable to be used in diesel engines.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction

2005-10-23
2005-26-348
This study was set out to characterize particulate emissions from diesel engines in terms of poly aromatic hydrocarbon emissions and Benzene Soluble Organic Fraction. The characteristics of DPM vary with engine operating conditions, quality of fuel and lubricants being used. Hence the diesel exhaust for the purpose of toxicity characterization needs to be studied for Organic Matter in terms of Poly Aromatic Hydrocarbon (PAH) and Benzene Soluble Fraction (BSF). Therefore, the objectives of the present research are to characterize the diesel exhaust particulate matter for the above parameters under varying engine operating conditions/loads. Six PAHs, namely Chrysene, Benzo (k) Flouranthene, Benzo (a) Pyrene, Dibenzo (a, h) Anthracene, Benzo (g,h,i) Perylene and Indenopyrene were analyzed on High Pressure Liquid Chromatography (HPLC). PAH concentrations in the particulates of Mahindra DI engine were affected by engine loads.
Technical Paper

Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System

2002-10-21
2002-01-2898
Dimethyl Ether (DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in compression-ignition engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of the DME. Experimental study of the DME and conventional diesel spray employing a common-rail type fuel injection system with a sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. A CCD camera was employed to capture time series of spray images, so that spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. Intermittent hesitating DME spray appeared at injection pressures of 25MPa and 40MPa in both atmospheric and 3MPa chamber pressures.
Technical Paper

Effect of Breathing Characteristics on the Performance in Spark-Ignition Engines

2000-06-12
2000-05-0036
Adaptive valve timing control is one of the promising techniques to accomplish the optimized mixture formation and combustion depending on the load and speed, which is needed to meet the future challenges of reducing fuel consumption and exhaust emissions. The behavior and the effect of adaptive valve timing control system has been investigated by computer simulation, which simulates the gas dynamics in engines. These programs are typically one-dimensional including complex flow features as ‘special’ boundaries. A code adopting 2-step Lax-Wendroff method with artificial damping terms called FCT(Flux Corrected Transport), was developed to investigate the influence of operational and design parameters on the performance of engines. The effects of adaptive valve timing control system on volumetric efficiency or engine torque, and pumping loss were investigated. It increased low end torque by about 6%, and reduced pumping loss drastically at low load, high engine speed conditions.
Technical Paper

Effect of Design Parameters on the Performance of Finned Exhaust Heat Exchanger

2003-10-27
2003-01-3076
This paper describes the results of a DOE (design of experiment) applied to an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to avoid thermal aging. The DOE evaluates the influence of the selected eight design parameters of the heat exchanger geometry on the performance of the exhaust gas cooling system, and the interaction between these parameters. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, number of fin), coolant direction, exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.
Technical Paper

Effect of Injection Parameters on the Combustion and Emission Characteristics in a Compression Ignition Engine Fuelled with Waste Cooking Oil Biodiesel

2013-10-14
2013-01-2662
An experimental study was conducted to investigate the impact of injection parameters on the combustion and emission characteristics in a compression ignition engine fuelled with neat waste cooking oil (WCO) biodiesel. A single-cylinder diesel engine equipped with common-rail system was used in this research. The test was performed over two engine loads at an engine speed of 800 r/min. Injection timing was varied from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) at two different injection pressures (80 and 160 MPa). Based on in-cylinder pressure, heat release rate was calculated to analyze the combustion characteristics. Carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and smoke were measured to examine the emission characteristics. The results showed that the indicated specific fuel consumption (ISFC) of WCO biodiesel was higher than that of diesel. The ISFC was increased as the injection timing was advanced and injection pressure was increased.
Technical Paper

Effect of Injection Strategy on Hydrogen Direct-Injection Spark-Ignition Engine

2021-09-05
2021-24-0050
The use of hydrogen as a possible fuel for internal combustion (IC) engines can help build a society with a clean transportation framework. Diluting the in-cylinder mixture can improve the efficiency of the engines. To prove the validity of lean burn in hydrogen IC engines, three different combustion modes are investigated in this study. The engine experiments are conducted in a spray-guided direct-injection (DI) spark-ignition engine with 10 MPa of hydrogen DI. When lean burn is applied to a hydrogen IC engine, the characteristics of pumping and heat transfer loss improve. The improvement in heat transfer loss is more significant than the reduction in negative pumping work for the indicated thermal efficiency. Among the three combustion modes, stratified charge combustion (SCC) develops the maximum indicated mean effective pressure. However, this mode deteriorates the combustion stability slightly. The nitrogen oxide emission is reduced when the excess air ratio is increased.
X