Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Active Pre-Chamber as a Technology for Addressing Fuel Slip and its Associated Challenges to Lambda Estimation in Hydrogen ICEs

2023-09-29
2023-32-0041
Heavy duty hydrogen (H2) internal combustion engines (ICEs), typically conversions from base diesel engines, can experience significant deterioration of combustion efficiency with enleanment despite relative engine stability due in part to non-optimized combustion chamber geometry for spark ignited (SI) combustion. This causes un-combusted H2 to “slip” into the exhaust largely undetected since it is not a typically measured exhaust species. In this study, several implications of H2 slip in H2 ICEs are explored. The sensitivity of air fuel ratio (AFR) measurement to H2 slip is discussed. The challenge this poses for closed-loop transient controls and the impact on nitrogen oxides (NOx) emissions are also shown. Finally, test results from an H2 ICE using an active pre-chamber highlight the improvement in combustion efficiency and transient stability relative to a baseline SI engine.
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Technical Paper

Design and Development of a High-Efficiency Single Cylinder Natural Gas-Fueled Jet Ignition Engine

2020-01-24
2019-32-0565
The current energy climate has created a push toward reducing consumption of fossil fuels and lowering emissions output in power generation applications. Combined with the desire for a more distributed energy grid, there is currently a need for small displacement, high efficiency engines for use in stationary power generation. An enabling technology for achieving high efficiencies with spark ignited engines for such applications is the use of jet ignition which enables ultra-lean (λ > ~1.6) combustion via air dilution. This paper provides a comprehensive review of the development of a 390cc, high efficiency single cylinder natural gas-fueled jet ignition engine operating ultra-lean. The engine was developed as part of the Department of Energy’s Advanced Research Projects Agency–Energy (DOE ARPA-E) GENSETS program. Design choices for minimizing friction are highlighted as well as test results showing further friction reduction through downspeeding.
Technical Paper

Experimental Studies of Gasoline Auxiliary Fueled Turbulent Jet Igniter at Different Speeds in Single Cylinder Engine

2019-09-09
2019-24-0105
Turbulent Jet Ignition (TJI) is a pre-chamber ignition system for an otherwise standard gasoline spark ignition engine. TJI works by injecting chemically active turbulent jets to initiate combustion in a premixed fuel/air mixture. The main advantage of TJI is its ability to ignite and burn, completely, very lean fuel/air mixtures in the main chamber charge. This occurs with a very fast burn rate due to the widely distributed ignition sites that consume the main charge rapidly. Rapid combustion of lean mixtures leads to lower exhaust emissions due to more complete combustion at a lower temperature. For this research, the effectiveness of the Mahle TJI system on combustion stability, lean limit and emissions in a single cylinder spark engine fueled with gasoline at different speeds was investigated. The combustion and heat release process was analyzed and the exhaust emissions were measured.
Technical Paper

Investigation of Ammonia-Fueled SI Combustion in a High Tumble Engine

2024-04-09
2024-01-2815
The use of ammonia (NH3), a low life-cycle carbon fuel, is an increasingly popular pathway towards decarbonization in the marine and other sectors. However, NH3 possesses low reactivity and flame speed, making its use in internal combustion engines challenging. Additionally, combustion of NH3 can produce incomplete combustion, combustion instability, and toxicity concerns related to fuel slip. Therefore, robustly igniting the fuel and promoting effective flame propagation is critical for NH3 usage in engines. In the present study, investigations of NH3 combustion in a 0.4-liter single-cylinder spark-ignited (SI) research engine are carried out experimentally over a range of operating conditions. 100% NH3 operation successfully covers 60% of the speed-load map, while other areas require aid from a secondary fuel. Compared to the gasoline baseline, 7 percentage points higher peak efficiency is realized by NH3, and nitrogen oxides (NOx) emissions are reduced by two thirds.
Technical Paper

Methodology for Combustion Analysis of a Spark Ignition Engine Incorporating a Pre-Chamber Combustor

2014-10-13
2014-01-2603
With an increasing global awareness of the need to conserve fuel resources and reduce carbon dioxide emissions, the automotive sector has been seeking gains in engine efficiency. One such method for achieving these gains on a spark ignition (SI) engine platform is through lean burn operation. Ultra-lean operation (λ>2) has demonstrated the ability to increase thermal efficiency and significantly reduce emissions of nitrogen oxides (NOx) due primarily to lower mean gas temperatures. Turbulent Jet Ignition (TJI), a pre-chamber-based combustion system, is a technology that enables ultra-lean operation. TJI is also an effective knock mitigation system due to the distributed nature of main chamber ignition, resulting in rapid burn rates. Pre-chamber combustors such as that utilized in TJI have been studied extensively for decades, but the interaction of the combustion events between the two chambers is not well understood.
Journal Article

Optimization of Lambda across the Engine Map for the Purpose of Maximizing Thermal Efficiency of a Jet Ignition Engine

2020-04-14
2020-01-0278
Progressively more stringent efficiency and emissions regulations for internal combustion engines have led to growing interest in advanced combustion concepts for spark ignition engines. MAHLE Jet Ignition® (MJI) is one such concept which enables ultra-lean (λ > ~1.6) combustion via air dilution. This pre-chamber-based combustion system has demonstrated highly efficient lean operation, producing efficiencies competitive with those of advanced compression ignition concepts. Compared to a traditional spark ignition engine, the additional degrees of freedom associated with Jet Ignition introduce further complexity when optimizing the system for peak efficiency throughout the engine map. The relationship between operating condition and the lambda at which peak efficiency occurs for a Jet Ignition engine has been presented in prior work by the authors.
Technical Paper

Sub-200 g/kWh BSFC on a Light Duty Gasoline Engine

2016-04-05
2016-01-0709
Increasingly stringent global fuel economy and carbon dioxide (CO2) legislation for light duty passenger cars has created an interest in unconventional operating modes. One such mode in spark ignition (SI) gasoline engines is lean combustion. While lean operation in SI engines has previously demonstrated the ability to reduce fuel consumption, the degree of enleanment capability of the system is limited by increasingly unstable combustion in the lean region, particularly for homogeneous lean approaches. MAHLE Jet Ignition® (MJI) is a pre-chamber-based combustion system that extends this lean limit beyond the capabilities of modern SI engines by increasing the ignition energy present in the system. This allows the engine to exploit the benefits of homogeneous ultra-lean (λ > ∼1.6) combustion, namely reduced fuel consumption and reduced emissions of nitrogen oxides (NOx). Pre-chamber combustors such as that utilized in MJI have been studied extensively for decades.
Technical Paper

The Effect of Homogeneous Lean Combustion on Efficiency and Emissions Trends in Natural Gas-Fueled Small Engines

2021-04-06
2021-01-0652
Alternative combustion modes for spark ignition engines, such as homogeneous lean combustion, have been extensively researched in transportation and large stationary power applications due to their inherent emissions and fuel efficiency benefits. However, these types of approaches have not been explored for small engines (≤ 30 kW), as the various applications for these engines have historically had significantly different market demands and less stringent emissions requirements. However, going forward, small engines will need to incorporate new technologies to meet increasingly stringent regulatory guidelines. One such technology is jet ignition, enables lean combustion via air dilution through the use of a pre-chamber combustor.
Technical Paper

The Effects of Turbulent Jet Characteristics on Engine Performance Using a Pre-Chamber Combustor

2014-04-01
2014-01-1195
Increasingly stringent US fuel economy regulation has emphasized the need for automotive engines to achieve greater levels of efficiency. Lean operation in spark ignition engines has demonstrated the ability to increase thermal efficiency, but this is typically accompanied by increased nitrogen oxides (NOx) emissions. Ultra-lean operation (λ > 2), however, has demonstrated increased thermal efficiency and the potential for significant reductions in NOx. Turbulent Jet Ignition (TJI) enables ultra-lean operation by utilizing radical turbulent jets emerging from a pre-chamber combustor as the ignition source for main chamber combustion in a spark ignition engine. This study seeks to better understand the interaction between the pre-chamber and main chamber combustion events, specifically the effect that particular TJI design parameters have on this interaction.
Journal Article

The Impact of Advanced Fuels and Lubricants on Thermal Efficiency in a Highly Dilute Engine

2021-04-06
2021-01-0462
In spark ignited engines, thermal efficiency is strongly influenced by the quality of the combustion process as initiated by the ignition system. Jet Ignition is a combustion concept that utilizes a small pre-chamber to produce reactive jets which distribute ignition energy throughout the main combustion chamber. This distributed ignition energy can be leveraged to induce ignition in traditionally difficult-to-ignite regimes, such as in highly dilute mixtures. Highly dilute jet ignition combustion has been proven to produce thermal efficiencies significantly higher than those of conventional spark ignition combustion. To fully exploit the efficiency potential of active jet ignition, multiple aspects of the engine architecture and peripheral systems must be adjusted. Efficiency sensitivities to compression ratio, boost system, and intake port design have been explored extensively.
Technical Paper

The Impact of Engine Displacement on Efficiency Loss Pathways in a Highly Dilute Jet Ignition Engine

2019-04-02
2019-01-0330
Internal combustion engines currently face increasing regulatory reform which has motivated investigation of alternative combustion modes, particularly for spark ignition engines. Fuel economy regulations, among others, are presently driving the need for technological advances in the automotive sector. Stationary power generation is facing emissions standards that will be increasingly difficult to achieve with combustion-based current practices, particularly in the case of nitrogen oxides (NOx). Ultra-lean (λ > ~1.6; air-fuel ratio > 23:1) combustion via air dilution is one such combustion mode that provides the benefits of reduced fuel consumption and reduced NOx emissions. Jet ignition is a pre-chamber-based combustion system that enables enleanment beyond what is achievable with traditional spark ignition engines. Previous studies of MAHLE’s Jet Ignition® concept have primarily focused on light-duty gasoline engines.
X