Refine Your Search

Topic

null

Search Results

Standard

Aerospace Information Report for Continuous Flow Oxygen Hose Disconnect Fittings

2000-10-01
AIR1358A
This AIR indicates those dimensions, deemed critical by the manufacturer, which are required to be adhered to so that proper mating of the disconnect hose fitting with the correct disconnect be accomplished. The dimensions are critical, but not necessarily complete, in defining these fittings since there are other criteria which must also be met.
Standard

Aircraft Oxygen Replenishment Coupling for Civil Transport Aircraft (Design Standard)

2021-03-09
WIP
AS1219B
This SAE Aerospace Design Standard defines a coupling, which is installed in a high pressure (1850 to 2000 psig) oxygen system of a civil transport aircraft for the purpose of mating to ground oxygen replenishment facilities. Dimensions developed from AND10089, Detail Specification Sheet for Fitting End, Design Standard, For Cone Connection.
Standard

Aircraft Oxygen Replenishment Coupling for Civil Transport Aircraft (Design Standard)

2020-02-28
AS1219A
This SAE Aerospace Design Standard defines a coupling, which is installed in a high pressure (1850 to 2000 psig) oxygen system of a civil transport aircraft for the purpose of mating to ground oxygen replenishment facilities. Dimensions developed from AND10089, Detail Specification Sheet for Fitting End, Design Standard, For Cone Connection.
Standard

CONTINUOUS FLOW CHEMICAL OXYGEN GENERATORS

2011-08-15
AS1304
This Aerospace Standard (AS) provides recommended design guidelines for composition formation, performance, testing and reliability of metal-chlorate-perchlorate class solid chemical oxygen generators, supplying oxygen at essentially ambient pressure, for aircraft whose cabin pressure altitude does not exceed 40,000 feet (12,192 m).
Standard

Chemical Oxygen Systems

2021-08-09
AIR825/4A
This SAE Aerospace Information Report (AIR) provides an orientation regarding the general technology of chemical oxygen generators to aircraft engineers for assistance in determining whether chemical oxygen generators are an appropriate oxygen supply source for hypoxia protection in a given application and as an aid in specifying such generators. Information regarding the details of design and manufacture of chemical oxygen generators is generally beyond the scope of this document.
Standard

Continuous Flow Chemical Oxygen Generators

2014-06-24
AS1304B
This SAE Aerospace Standard (AS) applies to performance and testing of solid chemical oxygen generators which produce oxygen at essentially ambient pressure for use aboard aircraft whose cabin pressure altitude does not exceed 40,000 ft (about 12,200 m). Portable chemical oxygen devices are covered by AS1303.
Standard

Continuous Flow Chemical Oxygen Generators

2011-06-21
AS1304A
This SAE Aerospace Standard (AS) applies to performance and testing of solid chemical oxygen generators which produce oxygen at essentially ambient pressure for use aboard aircraft whose cabin pressure altitude does not exceed 40,000 ft (about 12,200 m). Portable chemical oxygen devices are covered by AS1303.
Standard

Continuous Flow Oxygen Regulator

2018-10-18
AS1197A
This standard covers regulators of the following types: Type I - Automatic Continuous Flow Type II - Adjustable Continuous Flow Type III - Pre-set Continuous Flow Class A - Cylinder Mounted Class B - Line Mounted Special - Composite Continuous Flow (Appendix)
Standard

DYNAMIC TESTING SYSTEM FOR OXYGEN BREATHING EQUIPMENT

1969-04-01
ARP1109
This ARP covers a system and method to be used, at all appropriate altitudes, in testing of breathing oxygen systems consisting of demand regulator, connecting hose, and mask, or regulator and helmet systems, or individual components.
Standard

HIGH PRESSURE OXYGEN SYSTEM FILLER VALVE

1971-07-30
AS1225
This AS covers oxygen filler valves for use in aircraft to ensure safe servicing of high pressure oxygen system cylinders. The intent is that the valve shall automatically control the rate of fill such that the temperature rise in the oxygen system caused by compression heating of the gas will be within acceptable limits. In addition, the valve shall have a pressure sensitive closing valve to automatically control the final pressure for a correct amount of oxygen in the system cylinder. The pressure closing level may be manually selected by means of adjustment dials on the valve.
Standard

MINIMUM STANDARD FOR OXYGEN PRESSURE REDUCERS

1991-09-01
AS1248
This standard is designed to cover all types of pressure reducers required for oxygen systems and for all performance profiles without regard for a particular inlet pressure or outlet pressure performance curve. Special attention will be given, however, to construction requirements essential in reducers where critical high initial oxygen pressures such as 1850 to 2250 psig (12.76 to 15.51 MN/m2 gauge) at 70° F (21.1° C) are involved.
Standard

MINIMUM STANDARD FOR PORTABLE GASEOUS, OXYGEN EQUIPMENT

1976-02-01
AS1046A
This standard is intended to apply to that portable compressed gaseous oxygen equipment used for the administration of supplementary and/or first aid oxygen to one or more occupants of either private or commercial transport aircraft.
Standard

MINIMUM STANDARDS FOR VALVE, HIGH PRESSURE OXYGEN, CYLINDER SHUT OFF, MANUALLY OPERATED

1996-07-01
AS1066A
This standard covers all types of manually operated high pressure oxygen, cylinder shut off valves for use in commercial type aircraft. It is intended that the valve shall be attached to a pressure cylinder storing oxygen under pressure of 1800 to 2100 psig at 70 °F. Upon opening the valve, oxygen will be permitted to discharge from the storage cylinder to the valve outlet and thence to other components of the oxygen system. It shall also be possible to recharge the cylinder through the valve.
Standard

MINIMUM STANDARDS FOR VALVE, HIGH PRESSURE OXYGEN, CYLINDER SHUT OFF, MANUALLY OPERATED

1968-12-01
AS1066
This standard covers all types of manually operated high pressure oxygen, cylinder shut off valves for use in commercial type aircraft. It is intended that the valve shall be attached to a pressure cylinder storing oxygen under pressure of 1800 to 2100 psig at 70 F. Upon opening the valve, oxygen will be permitted to discharge from the storage cylinder to the valve outlet and thence to other components of the oxygen system. It shall also be possible to recharge the cylinder through the valve.
X