Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Impact of Aniline Octane Booster on Lubricating Oil

2016-10-17
2016-01-2273
This paper describes the observed impact of aniline octane booster and more specifically N-Methyl Aniline (NMA) on lubricating oil, following field issues encountered in vehicles in certain areas of the world where aniline based octane booster was assumed to be used. The observed field issue was heavy sludge formation, leading to engine malfunctions. The impact of NMA on lubricating oil could first be replicated using a modified version of the CEC L-109 oxidation bench test, with oil diluted with fuel and NMA at start of test. Significant kinematic viscosity (KV100) increase at the end of test was evidenced, especially as NMA content was increased in the oil. Total base number (TBN) evaluated at end of test also showed values above fresh oil (at or above 4.5 wt% NMA) that was consistent with observations from the field. The assessment of NMA impact was then scaled up using ACEA black sludge engine test.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

Study of Interaction of N-Methyl Aniline Octane Booster on Lubricating Oil

2018-09-10
2018-01-1809
The impact of N-Methyl Aniline (NMA) octane booster on lubricating oil has previously been studied and the main findings were reported in SAE paper 2016-01-2273. Increased sludge formation had been observed in modified ACEA black sludge testing when NMA was added to the fuel but there was very limited viscosity increase, which did not corroborate the trend evidenced on modified CEC L-109 oxidation testing where significant viscosity increase was noted when NMA was added to the oil and fuel mixture. Accordingly, modified black sludge tests have been run with and without NMA added to the oil sump at the beginning of the test to better match modified L-109 oxidation bench test conditions. Results showed the same trend in terms of viscosity increase between the modified L-109 oxidation bench test and black sludge test.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
X