Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Technical Paper

A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations

2013-04-08
2013-01-1099
A comprehensive biodiesel combustion model is presented for use in multi-dimensional engine simulations. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. Previously, a detailed mechanism for methyl decanoate and methyl-9-decenoate was reduced from 3299 species to 85 species to represent the components of biodiesel fuel. In this work, a second reduction was performed to further reduce the mechanism to 69 species. Steady and unsteady spray simulations confirmed that the model adequately reproduced liquid penetration observed in biodiesel spray experiments. Additionally, the new model was able to capture expected fuel composition effects with low-volatility components and fuel blend sprays penetrating further.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2007-04-16
2007-01-0119
A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load

2010-04-12
2010-01-1263
The objective of this investigation is to optimize a light-duty diesel engine in order to minimize soot, NOx, carbon monoxide (CO), unburned hydrocarbon (UHC) emissions and peak pressure rise rate (PPRR) while improving fuel economy in a low oxygen environment. Variables considered are the injection timings, fractional amount of fuel per injection, half included spray angle, swirl, and stepped-bowl piston geometry. The KIVA-CHEMKIN code, a multi-dimensional computational fluid dynamics (CFD) program with detailed chemistry is used and is coupled to a multi-objective genetic algorithm (MOGA) along with an automated grid generator. The stepped-piston bowl allows more options for spray targeting and improved charge preparation. Results show that optimal combinations of the above variables exist to simultaneously reduce emissions and fuel consumption. Details of the spray targeting were found to have a major impact on the combustion process.
Journal Article

A Computational Investigation of Two-Stage Combustion in a Light-Duty Engine

2008-10-06
2008-01-2412
The objective of this investigation is to optimize light-duty diesel engine operating parameters using Adaptive Injection Strategies (AIS) for optimal fuel preparation. A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN code, is employed and a Multi-Objective Genetic Algorithm (MOGA) is used to study a Two-Stage Combustion (TSC) concept. The combustion process is considered at a light load operating condition (nominal IMEP of 5.5 bar and high speed (2000 rev/min)), and two combustion modes are combined in this concept. The first stage is ideally Homogeneous Charge Compression Ignition (HCCI) combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions. Available experimental data on a 1.9L single-cylinder research engine is used for model validation.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

1995-10-01
952431
A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results.
Technical Paper

A Study of Diesel Cold Starting using both Cycle Analysis and Multidimensional Calculations

1991-02-01
910180
The physical in-cylinder processes and ignition during cold starting have been studied using computational models, with particular attention to the influences of blowby, heat transfer during the compression stroke, spray development, vaporization and fuel/air mixture formation and ignition. Two different modeling approaches were used. A thermodynamic zero dimensional cycle analysis program in which the fuel injection effects were not modeled, was used to determine overall and gas exchange effects. The three-dimensional KIVA-II code was used to determine details of the closed cycle events, with modified atomization, blowby and spray/wall impingement models, and a simplified model for ignition. The calculations were used to obtain an understanding of the cold starting process and to identify practical methods for improving cold starting of direct injection diesel engines.
Technical Paper

A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion

2006-04-03
2006-01-0026
Experiments were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine at high speed (1737 rev/min) and loads up to 60% of full load for fully Premixed Charge Compression Ignition (PCCI) combustion. The engine was equipped with a high pressure (150 MPa) Caterpillar 300B HEUI fuel injection system. The engine was run with EGR levels up to 75% and with equivalence ratios up to 0.95. These experiments resulted in compliance of NOx and PM emissions to 2010 emissions mandates levels up to the tested load. The set of experiments also demonstrated the importance of cylinder charge preparation by way of optimized start-of-combustion timing for sufficient in-cylinder mixing. It was found that increased EGR rates, even with the correspondingly increased equivalence ratios, increase mixing time and substantially decrease PM emissions.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

Adaptive Injection Strategies (AIS) for Ultra-Low Emissions Diesel Engines

2008-04-14
2008-01-0058
Homogeneous Charge Compression Ignition (HCCI) combustion is being considered as a practical solution for diesel engines due to its high efficiency and low NOx and PM emissions. However, for diesel HCCI operation, there are still several problems that need to be solved. One is the spay-wall impingement issue associated with early injection, and a further problem is the extension of HCCI operation from low load to higher engine loads. In this study, a combination of Adaptive Injection Strategies (AIS) and a Two-Stage Combustion (TSC) strategy are proposed to solve the aforementioned problems. A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. The TSC concept was applied to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load).
Technical Paper

An Experimental Investigation of Partially Premixed Combustion Strategies Using Multiple Injections in a Heavy-Duty Diesel Engine

2006-04-03
2006-01-0917
Optimizations were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine for NOx, PM and BSFC reductions. The engine was equipped with a Caterpillar 300B HEUI fuel injection system capable of up to four injections with timings from 90 BTDC to 90 ATDC. The engine was operated at a medium load (57%), high speed (1737 rev/min) operation point. A micro-genetic algorithm was utilized to optimize a hybrid, double-injection strategy, which incorporated an early, premixed pilot injection with a late main injection. The fuel injection parameters, intake boost pressure, and EGR were considered in the optimization. The optimization produced a parameter set that met the 2007 and 2010 PM emissions mandate of 0.0134 g/kW-hr, and was within the 1.5x not to exceed NOx + HC mandate of 2.694 g/kW-hr. Following the optimization exercise, further parametric interaction studies were performed to reveal the underlying interactions and phenomena.
Technical Paper

An Experimental Study of Dual Fueling with Gasoline Port Injection in a Single-Cylinder, Air-Cooled HSDI Diesel Generator

2010-04-12
2010-01-0869
An experimental study was conducted on an air cooled high-speed, direct-injection diesel generator that investigated the use of gasoline in a dual fuel PCCI strategy. The single-speed generator used in the study has an effective compression ratio of 17 and runs at 3600 rev/min. Varying amounts of gasoline were introduced into the combustion chamber through a port injection system. The generator uses an all-mechanical diesel fuel injection system that has a fixed injection timing. The experiments explored variable intake temperatures and fuel split quantities to investigate different combustion phasing regimes. Results from the study showed low combustion efficiency at low load. Low load operation was also characterized by high levels of HC and CO (in excess of 20 g/kwh and 50 g/kwh respectively). Operation at 75% load was more efficient, and displayed three different combustion regimes that are possible with PIG (port injected gasoline) dual fuel PCCI.
Technical Paper

An Experimental Study on Emissions Optimization Using Micro-Genetic Algorithms in a HSDI Diesel Engine

2003-03-03
2003-01-0347
Current automotive diesel engine research is motivated by the need to meet more-and-more strict emission regulations. The major target for future HSDI combustion research and development is to find the most effective ways of reducing the soot particulate and NOx emissions to the levels required by future emission regulations. Recently, a variety of statistical optimization tools have been proposed to optimize engine-operating conditions for emissions reduction. In this study, a micro-genetic algorithm technique, which locates a global optimum via the law of “the survival of the fittest”, was applied to a high-speed, direct-injection, single-cylinder (HSDI) diesel engine. The engine operating condition considered single-injection operation using a common-rail fuel injection system was at 1757 rev/min and 45% load.
Technical Paper

Application of A Multiple-Step Phenomenological Soot Model to HSDI Diesel Multiple Injection Modeling

2005-04-11
2005-01-0924
Multiple injection strategies have been revealed as an efficient means to reduce diesel engine NOx and soot emissions simultaneously, while maintaining or improving its thermal efficiency. Empirical soot models widely adopted in engine simulations have not been adequately validated to predict soot formation with multiple injections. In this work, a multiple-step phenomenological (MSP) soot model that includes particle inception, surface growth, oxidation, and particle coagulation was revised to better describe the physical processes of soot formation in diesel combustion. It was found that the revised MSP model successfully reproduces measured soot emission dependence on the start-of-injection timing, while the two-step empirical and the original MSP soot models were less accurate. The revised MSP model also predicted reasonable soot and intermediate species spatial profiles within the combustion chamber.
Technical Paper

Application of Micro-Genetic Algorithms for the Optimization of Injection Strategies in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0219
In this paper, optimized single and double injection schemes were found using multi-dimensional engine simulation software (KIVA-3V) and a micro-genetic algorithm for a heavy duty diesel engine. The engine operating condition considered was at 1737 rev/min and 57 % load. The engine simulation code was validated using an engine equipped with a hydraulic-electronically controlled unit injector (HEUI) system. Five important parameters were used for the optimization - boost pressure, EGR rate, start-of-injection timing, fraction of fuel in the first pulse and dwell angle between first and second pulses. The optimum results for the single injection scheme showed significant improvements for the soot and NOx emissions. The start of injection timing was found to be very early, which suggests HCCI-like combustion. Optimized soot and NOx emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively, for the single injection scheme.
Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
X